Skip to main content

Advertisement

Log in

Variations in Physicochemical Properties and Bioconversion Efficiency of Ulva lactuca Polysaccharides After Different Biomass Pretreatment Techniques

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Green macroalgae are an abundant and undervalued biomass with a specific cell wall structure. In this context, different pretreatments, namely ethanol organosolv (Org), alkaline, liquid hot water (LHW), and ionic liquid (IL) pretreatments, were applied to the green macroalgae Ulva lactuca biomass and then evaluated. Their effects on chemical composition, biomass crystallinity, enzymatic digestibility, and theoretical ethanol potential were studied. The chemical composition analysis showed that the Org and LHW pretreatments allowed the highest glucan recovery (80.8 ± 3.6 and 62.9 ± 4.4 g/100 g DM, respectively) with ulvan (80.0 and 99.1%) and hemicellulose (55.0 and 42.3%) removal. These findings were in agreement with both thermogravimetric analysis and scanning electron microscopy results that confirm significant structural changes of the pretreated biomasses. It was found that the employed pretreatments did not significantly affect the cellulose crystallinity; however, they both increased the whole crystallinity and the enzymatic digestibility. This later reached 97.5% in the case of LHW pretreatment. Our results showed high efficiency saccharification of Ulva lactuca biomass that will constitute the key step of the implementation of a biorefinery process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

[EMIM][Ac]:

1-ethyl-3- methylimidazolium- acetate

CrI:

Crystallinity index

DM:

Dry matter

HPAEC-PAD:

High-performance anion exchange chromatography coupled to pulsed amperometric detection

IL:

Ionic liquid

LHW:

Liquid hot water

Org:

Ethanol organosolv

SEM:

Scanning electron microscopy

TGA:

Thermogravimetric analysis

References

  1. Suganya, T., Varman, M., Masjuki, H., & Renganathan, S. (2016). Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: a biorefinery approach. Renewable and Sustainable Energy Reviews, 55, 909–941.

    Article  CAS  Google Scholar 

  2. Borines, M. G., de Leon, R. L., & Cuello, J. L. (2013). Bioethanol production from the macroalgae Sargassum spp. Bioresource Technology, 138, 22–29.

    Article  CAS  Google Scholar 

  3. Binod, P., Sindhu, R., Singhania, R. R., Vikram, S., Devi, L., Nagalakshmi, S., Kurien, N., Sukumaran, R. K., & Pandey, A. (2010). Bioethanol production from rice straw: an overview. Bioresource Technology, 101, 4767–4774.

    Article  CAS  Google Scholar 

  4. Jmel, M. A., Ben, M. G., Marzouki, M. N., Mathlouthi, M., & Smaali, I. (2016). Physico-chemical characterization and enzymatic functionalization of Enteromorpha sp. cellulose. Carbohydrate Polymers, 135, 274–279.

    Article  CAS  Google Scholar 

  5. Ben, Y. N., Jmel, M. A., Ben, A. M., Bouallagui, H., Marzouki, M. N., & Smaali, I. (2016). A biorefinery concept using the green macroalgae Chaetomorpha linum for the coproduction of bioethanol and biogas. Energy Conversion and Management, 119, 257–265.

    Article  Google Scholar 

  6. Subhadra, B., & Edwards, M. (2010). An integrated renewable energy park approach for algal biofuel production in United States. Energy Policy, 38, 4897–4902.

    Article  CAS  Google Scholar 

  7. Jung, K. A., Lim, S.-R., Kim, Y., & Park, J. M. (2013). Potentials of macroalgae as feedstocks for biorefinery. Bioresource Technology, 135, 182–190.

    Article  CAS  Google Scholar 

  8. Bharathiraja, B., Chakravarthy, M., Kumar, R. R., Yogendran, D., Yuvaraj, D., Jayamuthunagai, J., Kumar, R. P., & Palani, S. (2015). Aquatic biomass (algae) as a future feed stock for bio-refineries: a review on cultivation, processing and products. Renewable and Sustainable Energy Reviews, 47, 634–653.

    Article  CAS  Google Scholar 

  9. Hendriks, A., & Zeeman, G. (2009). Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology, 100, 10–18.

    Article  CAS  Google Scholar 

  10. Fox, A., Nowycky, M., & Tsien, R. (1987). Kinetic and pharmacological properties distinguishing three types of calcium currents in chick sensory neurons. The Journal of Physiology, 394, 149.

    Article  CAS  Google Scholar 

  11. Zhao, X., Peng, F., Cheng, K., & Liu, D. (2009). Enhancement of the enzymatic digestibility of sugarcane bagasse by alkali–peracetic acid pretreatment. Enzyme and Microbial Technology, 44, 17–23.

    Article  CAS  Google Scholar 

  12. Da Cruz, S. H., Dien, B. S., Nichols, N. N., Saha, B. C., & Cotta, M. A. (2012). Hydrothermal pretreatment of sugarcane bagasse using response surface methodology improves digestibility and ethanol production by SSF. Journal of Industrial Microbiology & Biotechnology, 39, 439–447.

    Article  CAS  Google Scholar 

  13. Zavrel, M., Bross, D., Funke, M., Büchs, J., & Spiess, A. C. (2009). High-throughput screening for ionic liquids dissolving (ligno-) cellulose. Bioresource Technology, 100, 2580–2587.

    Article  CAS  Google Scholar 

  14. van der Wal, H., Sperber, B. L., Houweling-Tan, B., Bakker, R. R., Brandenburg, W., & López-Contreras, A. M. (2013). Production of acetone, butanol, and ethanol from biomass of the green seaweed Ulva lactuca. Bioresource Technology, 128, 431–437.

    Article  Google Scholar 

  15. Kim, D.-H., Lee, S.-B., & Jeong, G.-T. (2014). Production of reducing sugar from Enteromorpha intestinalis by hydrothermal and enzymatic hydrolysis. Bioresource Technology, 161, 348–353.

    Article  CAS  Google Scholar 

  16. Viell, J., Wulfhorst, H., Schmidt, T., Commandeur, U., Fischer, R., Spiess, A., & Marquardt, W. (2013). An efficient process for the saccharification of wood chips by combined ionic liquid pretreatment and enzymatic hydrolysis. Bioresource Technology, 146, 144–151.

    Article  CAS  Google Scholar 

  17. Viell, J., Inouye, H., Szekely, N. K., Frielinghaus, H., Marks, C., Wang, Y., Anders, N., Spiess, A. C., & Makowski, L. (2016). Multi-scale processes of beech wood disintegration and pretreatment with 1-ethyl-3-methylimidazolium acetate/water mixtures. Biotechnology for Biofuels, 9, 7.

    Article  Google Scholar 

  18. Resch M. G., Baker J. O., & Decker S. R. (2015). Low solids enzymatic saccharification of lignocellulosic biomass. Laboratory analytical procedure, Denver, NREL.

  19. Van Wychen, S., & Laurens, L. (2013). Determination of total carbohydrates in algal biomass. Laboratory analytical procedure, Denver, NREL.

  20. Anders, N., Humann, H., Langhans, B., & Spieß, A. (2015). Simultaneous determination of acid-soluble biomass-derived compounds using high performance anion exchange chromatography coupled with pulsed amperometric detection. Analytical Methods, 7, 7866–7873.

    Article  CAS  Google Scholar 

  21. Lahaye, M., & Robic, A. (2007). Structure and functional properties of ulvan, a polysaccharide from green seaweeds. Biomacromolecules, 8, 1765–1774.

    Article  CAS  Google Scholar 

  22. Bobin-Dubigeon, C., Lahaye, M., & Barry, J. L. (1997). Human colonic bacterial degradability of dietary fibres from sea-lettuce (Ulva sp). Journal of the Science of Food and Agriculture, 73, 149–159.

    Article  CAS  Google Scholar 

  23. Fleurence, J. (1999). Seaweed proteins: biochemical, nutritional aspects and potential uses. Trends in Food Science & Technology, 10, 25–28.

    Article  CAS  Google Scholar 

  24. Ortiz, J., Romero, N., Robert, P., Araya, J., Lopez-Hernández, J., Bozzo, C., Navarrete, E., Osorio, A., & Rios, A. (2006). Dietary fiber, amino acid, fatty acid and tocopherol contents of the edible seaweeds Ulva lactuca and Durvillaea antarctica. Food Chemistry, 99, 98–104.

    Article  CAS  Google Scholar 

  25. Schultz-Jensen, N., Thygesen, A., Leipold, F., Thomsen, S. T., Roslander, C., Lilholt, H., & Bjerre, A. B. (2013). Pretreatment of the macroalgae Chaetomorpha linum for the production of bioethanol—comparison of five pretreatment technologies. Bioresource Technology, 140, 36–42.

    Article  CAS  Google Scholar 

  26. Gupta, R. (2008). Alkaline pretreatment of biomass for ethanol production and understanding the factors influencing the cellulose hydrolysis, ProQuest2008.

  27. Robic, A., Gaillard, C., Sassi, J. F., Lerat, Y., & Lahaye, M. (2009). Ultrastructure of ulvan: a polysaccharide from green seaweeds. Biopolymers, 91, 652–664.

    Article  CAS  Google Scholar 

  28. Ravanal, M. C., Pezoa-Conte, R., von Schoultz, S., Hemming, J., Salazar, O., Anugwom, I., Jogunola, O., Mäki-Arvela, P., Willför, S., & Mikkola, J.-P. (2016). Comparison of different types of pretreatment and enzymatic saccharification of Macrocystis pyrifera for the production of biofuel. Algal Research, 13, 141–147.

    Article  Google Scholar 

  29. Pezoa-Conte, R., Leyton, A., Anugwom, I., von Schoultz, S., Paranko, J., Mäki-Arvela, P., Willför, S., Muszyński, M., Nowicki, J., & Lienqueo, M. (2015). Deconstruction of the green alga Ulva rigida in ionic liquids: closing the mass balance. Algal Research, 12, 262–273.

    Article  Google Scholar 

  30. Wendler, F., Meister, F., Wawro, D., Wesolowska, E., Ciechanska, D., Saake, B., Puls, J., Le Moigne, N., & Navard, P. (2010). Polysaccharide blend fibres formed from NaOH, N-methylmorpholine-N-oxide and 1-ethyl-3-methylimidazolium acetate. Fibres and Textiles in Eastern Europe, 18, 21–30.

    CAS  Google Scholar 

  31. Alves, A., Caridade, S. G., Mano, J. F., Sousa, R. A., & Reis, R. L. (2010). Extraction and physico-chemical characterization of a versatile biodegradable polysaccharide obtained from green algae. Carbohydrate Research, 345, 2194–2200.

    Article  CAS  Google Scholar 

  32. White, J. E., Catallo, W. J., & Legendre, B. L. (2011). Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies. Journal of Analytical and Applied Pyrolysis, 91, 1–33.

    Article  CAS  Google Scholar 

  33. Chen, W.-T., Ma, J., Zhang, Y., Gai, C., & Qian, W. (2014). Physical pretreatments of wastewater algae to reduce ash content and improve thermal decomposition characteristics. Bioresource Technology, 169, 816–820.

    Article  CAS  Google Scholar 

  34. Liu, H.-M., Li, M.-F., Yang, S., & Sun, R.-C. (2013). Understanding the mechanism of cypress liquefaction in hot-compressed water through characterization of solid residues. Energies, 6, 1590–1603.

    Article  CAS  Google Scholar 

  35. Chen, L., Li, J., Lu, M., Guo, X., Zhang, H., & Han, L. (2016). Integrated chemical and multi-scale structural analyses for the processes of acid pretreatment and enzymatic hydrolysis of corn stover. Carbohydrate Polymers, 141, 1–9.

    Article  CAS  Google Scholar 

  36. Li, M.-C., Wu, Q., Song, K., Lee, S., Qing, Y., & Wu, Y. (2015). Cellulose nanoparticles: structure–morphology–rheology relationships. ACS Sustainable Chemistry & Engineering, 3, 821–832.

    Article  CAS  Google Scholar 

  37. Choi, W.-Y., Kang, D.-H., & Lee, H.-Y. (2013). Enhancement of the saccharification yields of Ulva pertusa kjellmann and rape stems by the high-pressure steam pretreatment process. Biotechnology and Bioprocess Engineering, 18, 728–735.

    Article  CAS  Google Scholar 

  38. Wan, C., Zhou, Y., & Li, Y. (2011). Liquid hot water and alkaline pretreatment of soybean straw for improving cellulose digestibility. Bioresource Technology, 102, 6254–6259.

    Article  CAS  Google Scholar 

  39. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., & Ladisch, M. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96, 673–686.

    Article  CAS  Google Scholar 

  40. Behera, S., Arora, R., Nandhagopal, N., & Kumar, S. (2014). Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renewable and Sustainable Energy Reviews, 36, 91–106.

    Article  CAS  Google Scholar 

  41. Salapa, I., Katsimpouras, C., Topakas, E., & Sidiras, D. (2017). Organosolv pretreatment of wheat straw for efficient ethanol production using various solvents. Biomass and Bioenergy, 100, 10–16.

    Article  CAS  Google Scholar 

  42. Romero, A., Alonso, E., Sastre, A., & Nieto-Marquez, A. (2016). Conversion of biomass into sorbitol: cellulose hydrolysis on MCM-48 and d-Glucose hydrogenation on Ru/MCM-48. Microporous and Mesoporous Materials, 224, 1–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was carried out as a part of the ALGAEVAL project (TUNGER – 72) jointly funded by the German Federal Ministry of Education and Research (BMBF) and the Tunisian Ministry for Higher Education and Scientific Research (MESRS).

Part of this work was performed as part of the Cluster of Excellence “Tailor-Made Fuels from Biomass,” which is funded by the Excellence Initiative of the German federal and state governments to promote science and research at German universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Issam Smaali.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

ESM 1

(DOCX 56 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jmel, M.A., Anders, N., Yahmed, N.B. et al. Variations in Physicochemical Properties and Bioconversion Efficiency of Ulva lactuca Polysaccharides After Different Biomass Pretreatment Techniques. Appl Biochem Biotechnol 184, 777–793 (2018). https://doi.org/10.1007/s12010-017-2588-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2588-z

Keywords

Navigation