Skip to main content
Log in

Enhanced Production of Xylitol from Poplar Wood Hydrolysates Through a Sustainable Process Using Immobilized New Strain Candida tropicalis UFMG BX 12-a

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A new strain, Candida tropicalis UFMG BX 12-a, was found to produce higher yields of xylitol on poplar wood hemicellulose hydrolysate. The hemicellulose hydrolysate liquor was detoxified using a novel method we developed, involving vacuum evaporation and solvent separation of inhibitors which made the hydrolysate free of toxins while retaining high concentrations of fermentable sugars. The effect of the detoxification method on the fermentation was also reported and compared to well-known methods reported in literature. In this study, the new strain C. tropicalis UFMG BX 12-a was used on the detoxified hydrolysate to produce xylitol. It was also compared to Candida guilliermondii FTI 20037, which has been reported to be one of the best strains for fermentative production of xylitol. To further improve the efficiency of the fermentation process, these strains were immobilized in calcium alginate beads. The yield (0.92 g g−1) and productivity (0.88 g L−1 h−1) obtained by fermenting the wood hydrolysate detoxified by our new detoxification technique using an immobilized new Candida strain were found to be higher than the values reported in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lane, J. (2013) Top Molecules: The DOE’s 12 Top Biobased List—what’s worked out? Biobased digest.

  2. Yadav, M., Mishra, D. K., & Hwang, J.-S. (2012). Catalytic hydrogenation of xylose to xylitol using ruthenium catalyst on NiO modified TiO2 support. Applied Catalysis A: General, 425–426, 110–116.

    Article  Google Scholar 

  3. Ping, Y., Ling, H.-Z., Song, G., & Ge, J.-P. (2013). Xylitol production from non-detoxified corncob hemicellulose acid hydrolysate by Candida tropicalis. Biochemical Engineering Journal, 75, 86–91.

    Article  CAS  Google Scholar 

  4. Carvalho, W., Silva, S. S., Converti, A., Vitolo, M., Felipe, M. G., Roberto, I. C., Silva, M. B., & Mancilha, I. M. (2002). Use of immobilized Candida yeast cells for xylitol production from sugarcane bagasse hydrolysate: cell immobilization conditions. Applied Biochemistry and Biotechnology, 98-100, 489–496.

    Article  CAS  Google Scholar 

  5. Canilha, L., Carvalho, W., de Felipe, M. G. A., & de Almeida e Silva, J. B. (2008). Xylitol production from wheat straw hemicellulosic hydrolysate: hydrolysate detoxification and carbon source used for inoculum preparation. Brazilian Journal of Microbiology, 39, 333–336.

    Article  Google Scholar 

  6. Mayerhoff, Z. D. V. L., Roberto, I. C., & Silva, S. S. (1997). Xylitol production from rice straw hemicellulose hydrolysate using different yeast strains. Biotechnology Letters, 19, 407–409.

    Article  CAS  Google Scholar 

  7. Vithanage, L. N. G., Barbosa, A. M., Kankanamge, G. R. N., Rakshit, S. K., & Dekker, R. F. H. (2015). Valorization of hemicelluloses: production of bioxylitol from poplar wood prehydrolyzates by Candida guilliermondii FTI 20037. Bioenergy Research, 9, 181–197.

    Article  Google Scholar 

  8. Li, M., Meng, X., Diao, E., & Du, F. (2012). Xylitol production by Candida tropicalis from corn cob hemicellulose hydrolysate in a two-stage fed-batch fermentation process. Journal of Chemical Technology & Biotechnology, 87, 387–392.

    Article  CAS  Google Scholar 

  9. Su, B., Wu, M., Zhang, Z., Lin, J., & Yang, L. (2015). Efficient production of xylitol from hemicellulosic hydrolysate using engineered Escherichia coli. Metabolic Engineering, 31, 112–122.

    Article  CAS  Google Scholar 

  10. Sampaio, F. C., de Moraes, C. A., De Faveri, D., Perego, P., Converti, A., & Passos, F. M. L. (2006). Influence of temperature and pH on xylitol production from xylose by Debaryomyces hansenii UFV-170. Process Biochemistry, 41, 675–681.

    Article  CAS  Google Scholar 

  11. Jiang, X., He, P., Qi, X., Lin, Y., Zhang, Y. and Wang, Q. (2016). High-efficient xylitol production by evolved Candida maltosa adapted to corncob hemicellulosic hydrolysate. Journal of Chemical Technology & Biotechnology.

  12. Ur-Rehman, S., Mushtaq, Z., Zahoor, T., Jamil, A., & Murtaza, M. A. (2013). Xylitol: a review on bioproduction, application, health benefits, and related safety issues. Critical Reviews in Food Science and Nutrition, 55, 1514–1528.

    Article  Google Scholar 

  13. Palmqvist, E., Hahn-Hägerdal, B., Szengyel, Z., Zacchi, G. and Rèczey, K. (1997). Simultaneous detoxification and enzyme production of hemicellulose hydrolysates obtained after steam pretreatment. Enzyme Microb Tech, 20.

  14. Sárvári Horváth, I., Sjöde, A., Nilvebrant, N.-O., Zagorodni, A. and Jönsson, L. J. (2004). Selection of anion exchangers for detoxification of dilute-acid hydrolysates from spruce. Appl Biochem Biotechnol, 114.

  15. Zhuang, J., Liu, Y., Wu, Z., Sun, Y. and Lin, L. (2009). Hydrolysis of wheat straw hemicellulose and detoxification of the hydrolysate for xylitol production. ed.

  16. de Carvalho, W., Canilha, L., Mussatto, S. I., Dragone, G., Morales, M. L. V., & Solenzal, A. I. N. (2004). Detoxification of sugarcane bagasse hemicellulosic hydrolysate with ion-exchange resins for xylitol production by calcium alginate-entrapped cells. Journal of Chemical Technology & Biotechnology, 79, 863–868.

    Article  Google Scholar 

  17. Mussatto, S. I., & Roberto, I. C. (2004). Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Bioresource Technology, 93, 1–10.

    Article  CAS  Google Scholar 

  18. Jönsson, L. J., Alriksson, B., & Nilvebrant, N.-O. (2013). Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnology for Biofuels, 6, 16.

    Article  Google Scholar 

  19. Prakash, G., Varma, A. J., Prabhune, A., Shouche, Y., & Rao, M. (2011). Microbial production of xylitol from d-xylose and sugarcane bagasse hemicellulose using newly isolated thermotolerant yeast Debaryomyces hansenii. Bioresource Technology, 102, 3304–3308.

    Article  CAS  Google Scholar 

  20. Hernández-Pérez, A. F., Costa, I. A. L., Silva, D. D. V., Dussán, K. J., Villela, T. R., Canettieri, E. V., Carvalho Jr., J. A., Soares Neto, T. G., & Felipe, M. G. A. (2016). Biochemical conversion of sugarcane straw hemicellulosic hydrolyzate supplemented with co-substrates for xylitol production. Bioresource Technology, 200, 1085–1088.

    Article  Google Scholar 

  21. Silva, C. J. S. M., Mussatto, S. I., & Roberto, I. C. (2006). Study of xylitol production by Candida guilliermondii on a bench bioreactor. Journal of Food Engineering, 75, 115–119.

    Article  CAS  Google Scholar 

  22. Pilkington, P. H., Margaritis, A., Mensour, N. A., & Russell, I. (1998). Fundamentals of immobilised yeast cells for continuous beer fermentation: a review. Journal of the Institute of Brewing, 104, 19–31.

    Article  Google Scholar 

  23. Kumar, R., Vikramachakravarthi, D., & Pal, P. (2014). Production and purification of glutamic acid: a critical review towards process intensification. Chemical Engineering and Processing: Process Intensification, 81, 59–71.

    Article  CAS  Google Scholar 

  24. Shyamkumar, R., Moorthy, I. M. G., Ponmurugan, K., & Baskar, R. (2014). Production of L-glutamic acid with Corynebacterium glutamicum (NCIM 2168) and Pseudomonas reptilivora (NCIM 2598): a study on immobilization and reusability. Avicenna Journal of Medical Biotechnology, 6, 163–168.

    Google Scholar 

  25. Milessi, T. S. S., Antunes, F. A. F., Chandel, A. K., & da Silva, S. S. (2015). Hemicellulosic ethanol production by immobilized cells of Scheffersomyces stipitis: effect of cell concentration and stirring. Bioengineered, 6, 26–32.

    Article  CAS  Google Scholar 

  26. Antunes, F. A. F., Santos, J. C., Chandel, A. K., Milessi, T. S. S., Peres, G. F. D., & da Silva, S. S. (2016). Hemicellulosic ethanol production by immobilized wild Brazilian yeast Scheffersomyces shehatae UFMG-HM 52.2: effects of cell concentration and stirring rate. Current Microbiology, 72, 133–138.

    Article  CAS  Google Scholar 

  27. Nigam, J. N. (2000). Continuous ethanol production from pineapple cannery waste using immobilized yeast cells. Journal of Biotechnology, 80, 189–193.

    Article  CAS  Google Scholar 

  28. Lehoux, R. R. and Bradt, C. B. (2014) Solid/fluid separation device and method for treating biomass including solid/fluid separation. Google Patents.

  29. Dalli, S. S., Patel, M. and Rakshit, S. K. (2016). Development and evaluation of poplar hemicellulose prehydrolysate upstream processes for the enhanced fermentative production of xylitol. Biomass & Bioenergy, Under Review.

  30. Barbosa, M. F. S., de Medeiros, M. B., de Mancilha, I. M., Schneider, H., & Lee, H. (1988). Screening of yeasts for production of xylitol fromd-xylose and some factors which affect xylitol yield in Candida guilliermondii. Journal of Industrial Microbiology, 3, 241–251.

    Article  CAS  Google Scholar 

  31. Silva, S. S., Mussatto, S. I., Santos, J. C., Santos, D. T., & Polizel, J. (2007). Cell immobilization and xylitol production using sugarcane bagasse as raw material. Applied Biochemistry and Biotechnology, 141, 215–227.

    Article  CAS  Google Scholar 

  32. Martinez, A., Rodriguez, M. E., Wells, M. L., York, S. W., Preston, J. F. and Ingram, L. O. (2001). Detoxification of dilute acid hydrolysates of lignocellulose with lime. Biotechnol Progr, 17.

  33. Tada, K., Horiuchi, J.-I., Kanno, T., & Kobayashi, M. (2004). Microbial xylitol production from corn cobs using Candida magnoliae. Journal of Bioscience and Bioengineering, 98, 228–230.

    Article  CAS  Google Scholar 

  34. Ding, X., & Xia, L. (2006). Effect of aeration rate on production of xylitol from corncob hemicellulose hydrolysate. Applied Biochemistry and Biotechnololgy, 133, 263–270.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank GreenField Ethanol Inc. for providing the wood hydrolysate for this work. We are grateful to Prof. Carlos A. Rosa from Universidade Federal de Minas Gerais, Minas Gerais, Brazil, for providing the Candida tropicalis UFMG BX 12-a strain. We also thank MITACS, Canada, for the financial support to the first author, to travel to Brazil to conduct part of this study. The authors thank other lab members and technicians at DEBIQ, USP, Brazil, for their support during this project. We are grateful for the financial support obtained from the Canada Research Chair (CRC) and Canada Foundation for Innovation (CFI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudip K. Rakshit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dalli, S.S., da Silva, S.S., Uprety, B.K. et al. Enhanced Production of Xylitol from Poplar Wood Hydrolysates Through a Sustainable Process Using Immobilized New Strain Candida tropicalis UFMG BX 12-a. Appl Biochem Biotechnol 182, 1053–1064 (2017). https://doi.org/10.1007/s12010-016-2381-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2381-4

Keywords

Navigation