Skip to main content

Advertisement

Log in

Continuous Hydrogen Production from Agricultural Wastewaters at Thermophilic and Hyperthermophilic Temperatures

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The objective of this study was to investigate the effects of hydraulic retention time (HRT) (8 to 0.5 h) and temperature (55 to 75 °C) in two anaerobic fluidized bed reactors (AFBR) using cheese whey (AFBR-CW = 10,000 mg sugars L−1) and vinasse (AFBR-V = 10,000 mg COD L−1) as substrates. Decreasing the HRT to 0.5 h increased the hydrogen production rates in both reactors, with maximum values of 5.36 ± 0.81 L H2 h−1 L−1 in AFBR-CW and 0.71 ± 0.16 L H2 h−1 L−1 in AFBR-V. The optimal conditions for hydrogen production were the HRT of 4 h and temperature of 65 °C in AFBR-CW, observing maximum hydrogen yield (HY) of 5.51 ± 0.37 mmol H2 g COD−1. Still, the maximum HY in AFBR-V was 1.64 ± 0.22 mmol H2 g COD−1 at 4 h and 55 °C. However, increasing the temperature to 75 °C reduced the hydrogen production in both reactors. Methanol and butyric, acetic, and lactic acids were the main metabolites at temperatures of 55 and 65 °C, favoring the butyric and acetic metabolic pathways of hydrogen production. The increased productions of lactate, propionate, and methanol at 75 °C indicate that the hydrogen-producing bacteria in the thermophilic inoculum were inhibited under hyperthermophilic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Das, D., & Veziroǧlu, T. N. (2001). Hydrogen production by biological processes: a survey of literature. International Journal of Hydrogen Energy, 26, 13–28.

    Article  CAS  Google Scholar 

  2. Hallenbeck, P. C. (2009). Fermentative hydrogen production: principles, progress and prognosis. International Journal of Hydrogen Energy, 34, 7379–7389.

    Article  CAS  Google Scholar 

  3. Show, K. Y., Lee, D. J., Tay, J. H., Lin, C. Y., & Chang, J. S. (2012). Biohydrogen production: current perspectives and the way forward. International Journal of Hydrogen Energy, 37, 15616–15631.

    Article  CAS  Google Scholar 

  4. Wilkie, A. C., Riedesel, K. J., & Owens, J. M. (2000). Stillage characterization and anaerobic treatment of ethanol stillage from conventional and cellulosic feedstocks. Biomass and Bioenergy, 19, 63–102.

    Article  CAS  Google Scholar 

  5. Karadag, D., Köroǧlu, O. E., Ozkaya, B., Cakmakci, M., Heaven, S., & Banks, C. (2014). A review on fermentative hydrogen production from dairy industry wastewater. Journal of Chemical Technology and Biotechnology, 89, 1627–1636.

    Article  CAS  Google Scholar 

  6. Santos, S. C., Rosa, P. R. F., Sakamoto, I. K., Varesche, M. B. A., & Silva, E. L. (2014). Hydrogen production from diluted and raw sugarcane vinasse under thermophilic anaerobic conditions. International Journal of Hydrogen Energy, 39, 9599–9610.

    Article  CAS  Google Scholar 

  7. Pawar, S. S., & van Niel, E. W. J. (2013). Thermophilic biohydrogen production: how far are we? Applied Microbiology and Biotechnology, 97, 7999–8009.

    Article  CAS  Google Scholar 

  8. Lee, D. J., Show, K. Y., & Su, A. (2011). Dark fermentation on biohydrogen production: pure culture. Bioresource Technology, 102, 8393–8402.

    Article  CAS  Google Scholar 

  9. Gadow, S. I., Li, Y. Y., & Liu, Y. (2012). Effect of temperature on continuous hydrogen production of cellulose. International Journal of Hydrogen Energy, 37, 15465–15472.

    Article  CAS  Google Scholar 

  10. Gadow, S. I., Jiang, H., Hojo, T., & Li, Y. Y. (2013). Cellulosic hydrogen production and microbial community characterization in hyper-thermophilic continuous bioreactor. International Journal of Hydrogen Energy, 38, 7259–7267.

    Article  CAS  Google Scholar 

  11. Jiang, H., Gadow, S. I., Tanaka, Y., Cheng, J., & Li, Y. Y. (2015). Improved cellulose conversion to bio-hydrogen with thermophilic bacteria and characterization of microbial community in continuous bioreactor. Biomass and Bioenergy, 75, 57–64.

    Article  CAS  Google Scholar 

  12. Gadow, S. I., Jiang, H., & Li, Y. Y. (2016). Characterization and potential of three temperature ranges for hydrogen fermentation of cellulose by means of activity test and 16s rRNA sequence analysis. Bioresource Technology, 209, 80–89.

    Article  CAS  Google Scholar 

  13. Algapani, D. E., Qiao, W., Su, M., Pumpo, F., Wandera, S. M., Adani, F., & Dong, R. (2016). Bio-hydrolysis and bio-hydrogen production from food waste by thermophilic and hyperthermophilic anaerobic process. Bioresource Technology, 216, 768–777.

    Article  CAS  Google Scholar 

  14. Santos, S. C., Rosa, P. R. F., Sakamoto, I. K., Varesche, M. B. A., & Silva, E. L. (2014). Continuous thermophilic hydrogen production and microbial community analysis from anaerobic digestion of diluted sugar cane stillage. International Journal of Hydrogen Energy, 39, 9000–9011.

    Article  CAS  Google Scholar 

  15. Santos, S. C., Rosa, P. R. F., Sakamoto, I. K., Varesche, M. B. A., & Silva, E. L. (2014). Organic loading rate impact on biohydrogen production and microbial communities at anaerobic fluidized thermophilic bed reactors treating sugar cane stillage. Bioresource Technology, 159, 55–63.

    Article  CAS  Google Scholar 

  16. Rosa, P. R. F., Santos, S. C., Sakamoto, I. K., Varesche, M. B. A., & Silva, E. L. (2014). Hydrogen production from cheese whey with ethanol-type fermentation: effect of hydraulic retention time on the microbial community composition. Bioresource Technology, 161, 10–19.

    Article  CAS  Google Scholar 

  17. Rosa, P. R. F., Santos, S. C., & Silva, E. L. (2014). Different ratios of carbon sources in the fermentation of cheese whey and glucose as substrates for hydrogen and ethanol production in continuous reactors. International Journal of Hydrogen Energy, 39, 1288–1296.

    Article  CAS  Google Scholar 

  18. Shida, G. M., Barros, A. R., Reis, C. M., Amorim, E. L. C., Damianovic, M. H. R. Z., & Silva, E. L. (2009). Long-term stability of hydrogen and organic acids production in an anaerobic fluidized-bed reactor using heat treated anaerobic sludge inoculum. International Journal of Hydrogen Energy, 34, 3679–3688.

    Article  CAS  Google Scholar 

  19. Reis, C. M., & Silva, E. L. (2011). Effect of upflow velocity and hydraulic retention time in anaerobic fluidized-bed reactors used for hydrogen production. Chemical Engineering Journal, 172, 28–36.

    Article  Google Scholar 

  20. Kim, D. H., Han, S. K., Kim, S. H., & Shin, H. (2006). Effect of gas sparging on continuous fermentative hydrogen production. International Journal of Hydrogen Energy, 31, 2158–2169.

    Article  CAS  Google Scholar 

  21. Standard methods for the examination for water and wastewater (2012). American Public Health Association, American Water Works Association, Water Environmental Federation. 22nd ed. Washington DC, USA.

  22. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28, 350–356.

    Article  CAS  Google Scholar 

  23. Walker, M., Zhang, Y., Heaven, S., & Banks, C. (2009). Potential errors in the quantitative evaluation of biogas production in anaerobic digestion processes. Bioresource Technology, 100, 6339–6346.

    Article  CAS  Google Scholar 

  24. Azbar, N., Dokgoz, F. T., Keskin, T., Korkmaz, K. S., & Syed, H. M. (2009). Continuous fermentative hydrogen production from cheese whey wastewater under thermophilic anaerobic conditions. International Journal of Hydrogen Energy, 34, 7441–7447.

    Article  CAS  Google Scholar 

  25. Intanoo, P., Rangsunvigit, P., Namprohm, W., Thamprajamchit, B., Chavadej, J., & Chavadej, S. (2012). Hydrogen production from alcohol wastewater by an anaerobic sequencing batch reactor under thermophilic operation: nitrogen and phosphorous uptakes and transformation. International Journal of Hydrogen Energy, 37, 11104–11112.

    Article  CAS  Google Scholar 

  26. Gadow, S. I., Jiang, H., Hojo, T., & Li, Y. Y. (2013). Effect of temperature and temperature shock on the stability of continuous cellulosic-hydrogen fermentation. Bioresource Technology, 142, 304–311.

    Article  CAS  Google Scholar 

  27. Zhong, J., Stevens, D. K., & Hansen, C. L. (2015). Optimization of anaerobic hydrogen and methane production from dairy processing waste using a two-stage digestion in induced bed reactors (IBR). International Journal of Hydrogen Energy, 40, 15470–15476.

    Article  CAS  Google Scholar 

  28. Davila-Vazquez, G., Cota-Navarro, C. B., Rosales-Colunga, L. M., de León-Rodríguez, A., & Razo-Flores, E. (2009). Continuous biohydrogen production using cheese whey: improving the hydrogen production rate. International Journal of Hydrogen Energy, 34, 4296–4304.

    Article  CAS  Google Scholar 

  29. Intanoo, P., Suttikul, T., Leethochawalit, M., Gulari, E., & Chavadej, S. (2014). Hydrogen production from alcohol wastewater with added fermentation residue by an anaerobic sequencing batch reactor (ASBR) under thermophilic operation. International Journal of Hydrogen Energy, 39, 9611–9620.

    Article  CAS  Google Scholar 

  30. Luo, G., Xie, L., Zou, Z., Zhou, Q., & Wang, J. Y. (2010). Fermentative hydrogen production from cassava stillage by mixed anaerobic microflora: effects of temperature and pH. Applied Energy, 87, 3710–3717.

    Article  CAS  Google Scholar 

  31. Carrillo-Reyes, J., Celis, L. B., Alatriste-Mondragón, F., & Razo-Flores, E. (2014). Decreasing methane production in hydrogenogenic UASB reactors fed with cheese whey. Biomass and Bioenergy, 63, 101–108.

    Article  CAS  Google Scholar 

  32. Perna, V., Castelló, E., Wenzel, J., Zampol, C., Fontes Lima, D. M., Borzacconi, L., Varesche, M. B., Zaiat, M., & Etchebehere, C. (2013). Hydrogen production in an upflow anaerobic packed bed reactor used to treat cheese whey. International Journal of Hydrogen Energy, 38, 54–62.

    Article  CAS  Google Scholar 

  33. Ferraz Júnior, A. D. N., Etchebehere, C., & Zaiat, M. (2015). High organic loading rate on thermophilic hydrogen production and metagenomic study at an anaerobic packed-bed reactor treating a residual liquid stream of a Brazilian biorefinery. Bioresource Technology, 186, 81–88.

    Article  Google Scholar 

  34. Qiu, C., Wen, J., & Jia, X. (2011). Extreme-thermophilic biohydrogen production from lignocellulosic bioethanol distillery wastewater with community analysis of hydrogen-producing microflora. International Journal of Hydrogen Energy, 36, 8243–8251.

    Article  CAS  Google Scholar 

  35. Kargi, F., Eren, N. S., & Ozmihci, S. (2012). Hydrogen gas production from cheese whey powder (CWP) solution by thermophilic dark fermentation. International Journal of Hydrogen Energy, 37, 2260–2266.

    Article  CAS  Google Scholar 

  36. Romão, B. B., Batista, F. R. X., Ferreira, J. S., Costa, H. C. B., Resende, M. M., & Cardoso, V. L. (2014). Biohydrogen production through dark fermentation by a microbial consortium using whey permeate as substrate. Applied Biochemistry and Biotechnology, 172, 3670–3685.

    Article  Google Scholar 

  37. Venetsaneas, N., Antonopoulou, G., Stamatelatou, K., Kornaros, M., & Lyberatos, G. (2009). Using cheese whey for hydrogen and methane generation in a two-stage continuous process with alternative pH controlling approaches. Bioresource Technology, 100, 3713–3717.

    Article  CAS  Google Scholar 

  38. Lima, D. M. F., Lazaro, C. Z., Rodrigues, J. A. D., Ratusznei, S. M., & Zaiat, M. (2016). Optimization performance of an AnSBBR applied to biohydrogen production treating whey. Journal of Environmental Management, 169, 191–201.

    Article  CAS  Google Scholar 

  39. Dareioti, M. A., & Kornaros, M. (2014). Effect of hydraulic retention time (HRT) on the anaerobic co-digestion of agro-industrial wastes in a two-stage CSTR system. Bioresource Technology, 167, 407–415.

    Article  CAS  Google Scholar 

  40. Dareioti, M. A., & Kornaros, M. (2015). Anaerobic mesophilic co-digestion of ensiled sorghum, cheese whey and liquid cow manure in a two-stage CSTR system: effect of hydraulic retention time. Bioresource Technology, 175, 553–562.

    Article  CAS  Google Scholar 

  41. Buitrón, G., Prato-Garcia, D., & Zhang, A. (2014). Biohydrogen production from tequila vinasses using a fixed bed reactor. Water Science & Technology, 70, 1919–1925.

    Article  Google Scholar 

  42. Ferraz Júnior, A. D. N., Wenzel, J., Etchebehere, C., & Zaiat, M. (2014). Effect of organic loading rate on hydrogen production from sugarcane vinasse in thermophilic acidogenic packed bed reactors. International Journal of Hydrogen Energy, 39, 16852–16862.

    Article  Google Scholar 

  43. Fuess, L. T., Kiyuna, L. S. M., Garcia, M. L., & Zaiat, M. (2016). Operational strategies for long-term biohydrogen production from sugarcane stillage in a continuous acidogenic packed-bed reactor. International Journal of Hydrogen Energy, 41, 8132–8145.

    Article  CAS  Google Scholar 

  44. Reis, C. M., Carosia, M. F., Sakamoto, I. K., Varesche, M. B. A., & Silva, E. L. (2015). Evaluation of hydrogen and methane production from sugarcane vinasse in an anaerobic fluidized bed reactor. International Journal of Hydrogen Energy, 40, 8498–8509.

    Article  Google Scholar 

  45. Kargi, F., Eren, N. S., & Ozmihci, S. (2012). Bio-hydrogen production from cheese whey powder (CWP) solution: comparison of thermophilic and mesophilic dark fermentations. International Journal of Hydrogen Energy, 37, 8338–8342.

    Article  CAS  Google Scholar 

  46. Luo, G., Xie, L., Zou, Z., Wang, W., Zhou, Q., & Shim, H. (2010). Anaerobic treatment of cassava stillage for hydrogen and methane production in continuously stirred tank reactor (CSTR) under high organic loading rate (OLR). International Journal of Hydrogen Energy, 35, 11733–11737.

    Article  CAS  Google Scholar 

  47. Gupta, M., Gomez-Flores, M., Nasr, N., Elbeshbishy, E., Hafez, H., Naggar, M. H. E., & Nakhla, G. (2015). Performance of mesophilic biohydrogen-producing cultures at thermophilic condtions. Bioresource Technology, 192, 741–747.

    Article  CAS  Google Scholar 

  48. Roy, S., Vishnuvardhan, M., & Das, D. (2014). Continuous thermophilic biohydrogen production in packed bed reactor. Applied Energy, 136, 51–58.

    Article  CAS  Google Scholar 

  49. Zhang, K., Ren, N. Q., & Wang, A. J. (2015). Fermentative hydrogen production from corn stover hydrolysate by two typical seed sludges: effect of temperature. International Journal of Hydrogen Energy, 40, 3838–3848.

    Article  CAS  Google Scholar 

  50. Pap, B., Györkei, Á., Boboescu, I. Z., Nagy, I. K., Bíró, T., Kondorosi, É., & Maróti, G. (2015). Temperature-dependent transformation of biogas-producing microbial communities points to the increased importance of hydrogenotrophic methanogenesis under thermophilic operation. Bioresource Technology, 177, 375–380.

    Article  CAS  Google Scholar 

  51. Cisneros-Pérez, C., Carrillo-Reyes, J., Celis, L. B., Alatriste-Mondragón, F., Etchebehere, C., & Razo-Flores, E. (2015). Inoculum pretreatment promotes differences in hydrogen production performance in EGSB reactors. International Journal of Hydrogen Energy, 40, 6329–6339.

    Article  Google Scholar 

  52. Obazu, F. O., Ngoma, L., & Gray, V. M. (2012). Interrelationships between bioreactor volume, effluent recycle rate, temperature, pH, %H2, hydrogen productivity and hydrogen yield with undefined bacterial cultures. International Journal of Hydrogen Energy, 37, 5579–5590.

    Article  CAS  Google Scholar 

  53. Frascari, D., Cappelletti, M., Mendes, J. D. S., Alverini, A., Scimonelli, F., Manfreda, C., Longanesi, L., Zannoni, D., Pinelli, D., & Fedi, S. (2013). A kinetic study of biohydrogen production from glucose, molasses and cheese whey by suspended and attached cells of Thermotoga neapolitana. Bioresource Techonology, 147, 553–561.

    Article  CAS  Google Scholar 

  54. Schink, B., & Zeikus, J. G. (1980). Microbial methanol fermentation: a major end product of pectin metabolism. Current Microbiology, 4, 387–389.

    Article  CAS  Google Scholar 

  55. Collet, C., Adler, N., Schwitzguébel, J. P., & Péringer, P. (2004). Hydrogen production by Clostridium thermolacticum during continuous fermentation of lactose. International Journal of Hydrogen Energy, 29, 1479–1485.

    Article  CAS  Google Scholar 

  56. Noike, T., Takabatake, H., Mizuno, O., & Ohba, M. (2002). Inhibition of hydrogen fermentation of organic wastes by lactic acid bacteria. International Journal of Hydrogen Energy, 27, 1367–1371.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the CNPq—National Council for Scientific and Technological Development, CAPES—Coordination for the Improvement of Higher Education Personnel, and FAPESP—São Paulo Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edson Luiz Silva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramos, L.R., Silva, E.L. Continuous Hydrogen Production from Agricultural Wastewaters at Thermophilic and Hyperthermophilic Temperatures. Appl Biochem Biotechnol 182, 846–869 (2017). https://doi.org/10.1007/s12010-016-2366-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2366-3

Keywords

Navigation