Skip to main content
Log in

Enhanced Butanol Production Through Adding Organic Acids and Neutral Red by Newly Isolated Butanol-Tolerant Bacteria

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

As alternative microorganisms for butanol production with high butanol tolerant and productivity are in high demand, one excellent butanol-tolerant bacterium, S10, was isolated and identified as Clostridium acetobutylicum S10. In order to enhance the performance of butanol production, organic acids and neutral red were added during butanol fermentation. Synergistic effects were exhibited in the combinations of organic acids and neutral red to promote butanol production. Consequently, the optimal concentrations of combined acetate, butyrate, and neutral red were determined at sodium acetate 1.61 g/L, sodium butyrate 1.88 g/L, and neutral red 0.79 g/L, respectively, with the butanol yield of 6.09 g/L which was 20.89 % higher than that in control. These results indicated that combination of adding organic acid and neutral red is a potential effective measure to improve butanol production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zverlov, V., Berezina, O., Velikodvorskaya, G., & Schwarz, W. (2006). Bacterial acetone and butanol production by industrial fermentation in the Soviet Union: use of hydrolyzed agricultural waste for biorefinery. Applied Microbiology and Biotechnology, 71(5), 587–597.

    Article  CAS  Google Scholar 

  2. Dürre, P. (2007). Biobutanol: an attractive biofuel. Biotechnology Journal, 2(12), 1525–1534.

    Article  Google Scholar 

  3. Mitchell, W. J. (1997). Physiology of carbohydrate to solvent conversion by clostridia. Advances in Microbial Physiology, 39, 31–130.

    Article  Google Scholar 

  4. Jones, D. T., & Woods, D. R. (1986). Acetone-butanol fermentation revisited. Microbiological Reviews, 50(4), 484.

    CAS  Google Scholar 

  5. Isar, J., & Rangaswamy, V. (2012). Improved n-butanol production by solvent tolerant Clostridium beijerinckii. Biomass and Bioenergy, 37, 9–15.

    Article  CAS  Google Scholar 

  6. Garcia, V., Pakkila, J., Ojamo, H., Muurinen, E., & Keiski, R. L. (2011). Challenges in biobutanol production: how to improve the efficiency? Renewable & Sustainable Energy Reviews, 15(2), 964–980.

    Article  CAS  Google Scholar 

  7. Gabriel, C. (1928). Butanol fermentation Process1. Industrial and Engineering Chemistry, 20(10), 1063–1067.

    Article  CAS  Google Scholar 

  8. Tashiro, Y., & Sonomoto, K. (2010). Advances in butanol production by clostridia. Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology (Microbiology Book Series, number# 2) (pp. 1383–1394). Badajoz: FORMATEX.

    Google Scholar 

  9. Hüsemann, M., & Papoutsakis, E. T. (1990). Effects of propionate and acetate additions on solvent production in batch cultures of Clostridium acetobutylicum. Applied and Environmental Microbiology, 56(5), 1497–1500.

    Google Scholar 

  10. Yusof, S., Takriff, M. S., Amir, A., Kadhum, H., Mohammad, A., & Jahim, J. (2010). The effect of initial butyric acid addition on ABE fermentation by C. acetobutylicum NCIMB 619. Journal of Applied Science, 10(21), 2709–2712.

    Article  CAS  Google Scholar 

  11. GHeshlaghi, R., Scharer, J., Moo-Young, M., & Chou, C. (2009). Metabolic pathways of clostridia for producing butanol. Biotechnology Advances, 27(6), 764–781.

    Article  CAS  Google Scholar 

  12. Peguin, S., & Soucaille, P. (1995). Modulation of carbon and electron flow in Clostridium acetobutylicum by iron limitation and methyl viologen addition. Applied and Environmental Microbiology, 61(1), 403–405.

    CAS  Google Scholar 

  13. Tashiro, Y., Shinto, H., Hayashi, M., Baba, S.-I., Kobayashi, G., & Sonomoto, K. (2007). Novel high-efficient butanol production from butyrate by non-growing Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564) with methyl viologen. Journal of Bioscience and Bioengineering, 104(3), 238–240.

    Article  CAS  Google Scholar 

  14. Girbal, L., Vasconcelos, I., Saint-Amans, S., & Soucaille, P. (1995). How neutral red modified carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH. FEMS Microbiology Reviews, 16(2–3), 151–162.

    Article  CAS  Google Scholar 

  15. Wilkinson, S., Young, M., Goodacre, R., Morris, J., Farrow, J., & Collins, M. (1995). Phenotypic and genotypic differences between certain strains of Clostridium acetobutylicum. FEMS Microbiology Letters, 125(2–3), 199–204.

    Article  CAS  Google Scholar 

  16. Bryant, M. (1972). Commentary on the Hungate technique for culture of anaerobic bacteria. The American Journal of Clinical Nutrition, 25(12), 1324–1328.

    CAS  Google Scholar 

  17. Hungate, R. (1969). Chapter IV a roll tube method for cultivation of strict anaerobes. Methods in Microbiology, 3, 117–132.

    Article  Google Scholar 

  18. Ren, N., Cao, G., Wang, A., Lee, D.-J., Guo, W., & Zhu, Y. (2008). Dark fermentation of xylose and glucose mix using isolated Thermoanaerobacterium thermosaccharolyticum W16. International Journal of Hydrogen Energy, 33(21), 6124–6132.

    Article  CAS  Google Scholar 

  19. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28(10), 2731–2739.

    Article  CAS  Google Scholar 

  20. Goodfellow, M., Kämpfer, P., Busse, H.-J., Trujillo, M. E., Suzuki, K.-I., Ludwig, W., & Whitman, W. B. (2012). Bergey’s manual of systematic bacteriology 4 (2nd ed.). New York: Springer.

    Book  Google Scholar 

  21. Box, G. E., & Behnken, D. W. (1960). Some new three level designs for the study of quantitative variables. Technometrics, 2(4), 455–475.

    Article  Google Scholar 

  22. Guo, W.-Q., Ren, N.-Q., Wang, X.-J., Xiang, W.-S., Ding, J., You, Y., & Liu, B.-F. (2009). Optimization of culture conditions for hydrogen production by Ethanoligenens harbinense B49 using response surface methodology. Bioresource Technology, 100(3), 1192–1196.

    Article  CAS  Google Scholar 

  23. Zhang, C.-H., Ma, Y.-J., Yang, F.-X., Liu, W., & Zhang, Y.-D. (2009). Optimization of medium composition for butyric acid production by Clostridium thermobutyricum using response surface methodology. Bioresource Technology, 100(18), 4284–4288.

    Article  CAS  Google Scholar 

  24. Cao, G.-I., Ren, N.-Q., Wang, A.-J., Guo, W.-Q., Yao, J., Feng, Y.-J., & Zhao, Q.-I. (2010). Statistical optimization of culture condition for enhanced hydrogen production by Thermoanaerobacterium thermosaccharolyticum W16. Bioresource Technology, 101(6), 2053–2058.

    Article  CAS  Google Scholar 

  25. Zheng, J., Tashiro, Y., Wang, Q., & Sonomoto, K. (2015). Recent advances to improve fermentative butanol production: genetic engineering and fermentation technology. Journal of Bioscience and Bioengineering, 119(1), 1–9.

    Article  CAS  Google Scholar 

  26. Martin, J., Petitdemange, H., Ballongue, J., & Gay, R. (1983). Effects of acetic and butyric acids on solvents production by Clostridium acetobutylicum. Biotechnology Letters, 5(2), 89–94.

    Article  CAS  Google Scholar 

  27. Qureshi, N., Ezeji, T. C., Ebener, J., Dien, B. S., Cotta, M. A., & Blaschek, H. P. (2008). Butanol production by Clostridium beijerinckii. Part I: use of acid and enzyme hydrolyzed corn fiber. Bioresource Technology, 99(13), 5915–5922.

    Article  CAS  Google Scholar 

  28. Jo, J. H., Lee, D. S., Park, D., Choe, W.-S., & Park, J. M. (2008). Optimization of key process variables for enhanced hydrogen production by Enterobacter aerogenes using statistical methods. Bioresource Technology, 99(6), 2061–2066.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research was supported by the National Science and Technology Ministry (No. 2014BAJ21B02), National High Technology Research and Development Program (2011AA10A205), and the “Twelfth Five-Year Plan” National Science and Technology Program on Rural Area (2014BAL02B00) and Fundamental Research Funds for the Central Universities (No. HIT. KISTP. 201424).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Yang.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest between each other.

Human and Animal Rights

This article does not contain any studies involving human participants or animals performed by any of the authors.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

ESM 1

(DOCX 41 kb)

ESM 2

(DOCX 43 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, C., Cao, G., Wang, Z. et al. Enhanced Butanol Production Through Adding Organic Acids and Neutral Red by Newly Isolated Butanol-Tolerant Bacteria. Appl Biochem Biotechnol 180, 1416–1427 (2016). https://doi.org/10.1007/s12010-016-2176-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2176-7

Keyword

Navigation