Skip to main content

Advertisement

Log in

Directed Evolution and Mutant Characterization of Nitrilase from Rhodococcus rhodochrous tg1-A6

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this paper, a molecularly directed evolution-based approach was applied to modify the nitrilase from Rhodococcus rhodochrous tg1-A6 for improving properties in catalyzing nitriles. In the process of error-prone polymerase chain reaction (PCR) with the wild-type nitrilase gene acting as the template, a library of the randomly mutated nitrilase gene was constructed. Since the pH value of catalyzing solution decreased when glycolonitrile was used as the substrate of nitrilase, a high-throughput strategy based on the color change of a pH-sensitive indicator was established for rapid screening of the mutated nitrilase. After three rounds of random mutation and screening about 5000 clones, a variant (Mut3) with 5.3-fold activity of the wild-type counterpart was obtained. Five amino acid substitutions (D27E, N97K, L246F, D108E, and S111R) were found in the variant Mut3. The properties of three mutated enzymes obtained in the three-round mutation were investigated. In the conversion of glycolonitrile, the variant (Mut2) accumulated the highest concentration of glycolic acid at 10.6 g l−1, a much higher value than the wild type (3.2 g l−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. He, Y. C., Xu, J. H., Su, J. H., & Zhou, L. (2010). Bioproduction of glycolic acid from glycolonitrile with a new bacterial isolate of Alcaligenes sp. ECU0401. Applied Biochemistry and Biotechnology, 160, 1428–1440.

    Article  CAS  Google Scholar 

  2. Debabov, V. G., & Yanenko, A. S. (2011). Biocatalytic hydrolysis of nitriles. Review Journal of Chemistry, 1, 385–402.

    Article  Google Scholar 

  3. Fernandes, B. C. M., Mateo, C., Kiziak, C., Chmura, A., Wacker, J., van Rantwijk, F., Stolz, A., & Sheldon, R. A. (2006). Nitrile hydratase activity of a recombinant nitrilase. Advanced Synthesis and Catalysis, 348, 2597–2603.

    Article  CAS  Google Scholar 

  4. Komeda, H., Hori, Y., Kobayashi, M., & Shimizu, S. (1996). Transcriptional regulation of the Rhodococcus rhodochrous J1 nitA gene encoding a nitrilase. Proceedings of the National Academy of Sciences of the United States of America, 93, 10572–10577.

    Article  CAS  Google Scholar 

  5. Sharma, N. N., Sharma, M., & Bhalla, T. C. (2011). An improved nitrilase-mediated bioprocess for synthesis of nicotinic acid from 3-cyanopyridine with hyperinduced Nocardia globerula NHB-2. Journal of Industrial Microbiology and Biotechnology, 38, 1235–1243.

    Article  CAS  Google Scholar 

  6. Zhang, Z. J., Xu, J. H., He, Y. C., Ouyang, L. M., & Liu, Y. Y. (2011). Cloning and biochemical properties of a highly thermostable and enantioselective nitrilase from Alcaligenes sp. ECU0401 and its potential for (R)-(-)-mandelic acid production. Bioprocess and Biosystems Engineering, 34, 315–322.

    Article  CAS  Google Scholar 

  7. Sun, H., Gao, W., Fan, H., Wang, H., & Wei, D. (2015). Cloning, purification and evaluation of the enzymatic properties of a novel arylacetonitrilase from Luminiphilus syltensis NOR5-1B: a potential biocatalyst for the synthesis of mandelic acid and its derivatives. Biotechnology Letters, 37, 1655–1661.

    Article  CAS  Google Scholar 

  8. Schreiner, U., Hecher, B., Obrowsky, S., Waich, K., Klempier, N., Steinkellner, G., Gruber, K., Rozzell, J. D., Glieder, A., & Winkler, M. (2010). Directed evolution of Alcaligenes faecalis nitrilase. Enzyme and Microbial Technology, 47, 140–146.

    Article  CAS  Google Scholar 

  9. He, Y. C., Ma, C. L., Xu, J. H., & Zhou, L. (2011). A high-throughput screening strategy for nitrile-hydrolyzing enzymes based on ferric hydroxamate spectrophotometry. Applied Microbiology and Biotechnology, 89, 817–823.

    Article  CAS  Google Scholar 

  10. Luo, H., Fan, L., Chang, Y., Ma, J., Yu, H., & Shen, Z. (2010). Gene cloning, overexpression, and characterization of the nitrilase from Rhodococcus rhodochrous tg1-A6 in E. coli. Applied Biochemistry and Biotechnology, 160, 393–400.

    Article  CAS  Google Scholar 

  11. Dalby, P. A. (2011). Strategy and success for the directed evolution of enzymes. Current Opinion in Structural Biology, 21, 473–480.

    Article  CAS  Google Scholar 

  12. Goldsmith, M., & Tawfik, D. S. (2012). Directed enzyme evolution: beyond the low-hanging fruit. Current Opinion in Structural Biology, 22, 406–412.

    Article  CAS  Google Scholar 

  13. Li, Y., & Cirino, P. C. (2014). Recent advances in engineering proteins for biocatalysis. Biotechnology and Bioengineering, 111, 1273–1287.

    Article  CAS  Google Scholar 

  14. Griffiths, A. D., & Tawfik, D. S. (2006). Miniaturising the laboratory in emulsion droplets. Trends in Biotechnology, 24, 395–402.

    Article  CAS  Google Scholar 

  15. Bershtein, S., & Tawfik, D. S. (2008). Advances in laboratory evolution of enzymes. Current Opinion in Chemical Biology, 12, 151–158.

    Article  CAS  Google Scholar 

  16. Griffiths, A. D., Williams, S. C., Hartley, O., Tomlinson, I. M., Waterhouse, P., Crosby, W. L., Kontermann, R. E., Jones, P. T., Low, N. M., & Allison, T. J. (1994). Isolation of high affinity human antibodies directly from large synthetic repertoires. The EMBO Journal, 13, 3245–3260.

    CAS  Google Scholar 

  17. Fernandez-Gacio, A., Uguen, M., & Fastrez, J. (2003). Phage display as a tool for the directed evolution of enzymes. Trends in Biotechnology, 21, 408–414.

    Article  CAS  Google Scholar 

  18. Arnold, F. H., & Georgiou, G. (2003). Directed enzyme evolution: screening and selection methods. ed., Humana, Totowa.

  19. Xiao, Y., Huo, X., Qian, Y., Zhang, Y., Chen, G., Ouyang, P., & Lin, Z. (2014). Engineering of a CPC acylase using a facile pH indicator assay. Journal of Industrial Microbiology and Biotechnology, 41, 1617–1625.

    Article  CAS  Google Scholar 

  20. Banerjee, A., Kaul, P., Sharma, R., & Banerjee, U. C. (2003). A high-throughput amenable colorimetric assay for enantioselective screening of nitrilase-producing microorganisms using pH sensitive indicators. Journal of Biomolecular Screening, 8, 559–565.

    Article  CAS  Google Scholar 

  21. Studier, F. W. (2005). Protein production by auto-induction in high-density shaking cultures. Protein Expression and Purification, 41, 207–234.

    Article  CAS  Google Scholar 

  22. Zhang, L., Yin, B., Wang, C., Jiang, S., Wang, H., Yuan, Y. A., & Wei, D. (2014). Structural insights into enzymatic activity and substrate specificity determination by a single amino acid in nitrilase from Syechocystis sp. PCC6803. Journal of Structural Biology, 188, 93–101.

    Article  CAS  Google Scholar 

  23. Martinkova, L., & Kren, V. (2010). Biotransformations with nitrilases. Current Opinion in Chemical Biology, 14, 130–137.

    Article  CAS  Google Scholar 

  24. Voigt, C. A., Mayo, S. L., Arnold, F. H., & Wang, Z. G. (2001). Computational method to reduce the search space for directed protein evolution. Proceedings of the National Academy of Sciences of the United States of America, 98, 3778–3783.

    Article  CAS  Google Scholar 

  25. Morley, K. L., & Kazlauskas, R. J. (2005). Improving enzyme properties: when are closer mutations better? Trends in Biotechnology, 23, 231–237.

    Article  CAS  Google Scholar 

  26. Tollinger, M., Crowhurst, K. A., Kay, L. E., & Forman-Kay, J. D. (2003). Site-specific contributions to the pH dependence of protein stability. Proceedings of the National Academy of Sciences of the United States of America, 100, 4545–4550.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation of China (21276023; 21476025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, H., Ma, J., Chang, Y. et al. Directed Evolution and Mutant Characterization of Nitrilase from Rhodococcus rhodochrous tg1-A6. Appl Biochem Biotechnol 178, 1510–1521 (2016). https://doi.org/10.1007/s12010-015-1964-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1964-9

Keywords

Navigation