Skip to main content
Log in

Detection of Asp371, Phe375, and Tyr376 Influence on GD-95-10 Lipase Using Alanine Scanning Mutagenesis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

GD-95-10 and GD-95-20 lipases are modified GD-95 lipase variants, which lack 10 and 20 C-terminal amino acids, respectively. Previous analysis showed that GD-95-10 lipase has higher activity than GD-95 lipase, while GD-95-20 lipase almost completely loses its activity. Analysis in silico suggested three conservative amino acids at region between 369 and 378 amino acids which can be relevant to the activity of GD-95-10 lipase. These amino acids have direct contacts with residues involved in substrate binding, stabilization of the serine loop or form oxyanion hole. In this work, the role of Asp371, Phe375, and Tyr376 on activity, functionality, and structure of GD-95-10 lipase was analyzed by Ala scanning mutagenesis. We showed that even a single mutation can impact the main structure and activity of Geobacillus lipases. Our experiments provide new knowledge about lipases from thermophilic Geobacillus bacteria and are important for protein engineering and synthetic biology. These enzymes and their engineering can be basis for future biocatalysts applied in production of biofuel or other industrial esters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sangeetha, R., Arulpandi, I., & Geetha, A. (2011). Bacterial lipases as potential industrial biocatalysts: an overview. Research Journal of Microbiology, 6(1), 1–24.

    Article  CAS  Google Scholar 

  2. Jaeger, K. E., & Reetz, M. T. (1998). Microbial lipases form versatile tolls for biotechnology. Tibtech, 16, 396–403.

    Article  CAS  Google Scholar 

  3. Bornscheuer, U. T. (2002). Microbial carboxyl esterases: classification, properties and applications in biocatalysis. FEMS Microbiology Reviews, 26, 73–81.

    Article  CAS  Google Scholar 

  4. Singh, R., Gupta, N., Goswami, V. K., & Gupta, R. (2006). A simple activity staining protocol for lipases and esterases. Applied Microbiology and Biotechnology, 70, 679–682.

    Article  CAS  Google Scholar 

  5. Hasan, F., Shah, A. A., Javed, S., & Hameed, A. (2010). Enzymes used in detergents: lipases. African Journal of Biotechnology, 9(31), 4836–4844.

    CAS  Google Scholar 

  6. Sharma, D., Sharma, B., & Shukla, A. K. (2011). Biotechnological approach of microbial lipase: a review. Biotechnology, 10(1), 23–40.

    Article  CAS  Google Scholar 

  7. Maynard, J. A., Chen, G., Georgiou, G., & Iverson, B. L. (2002). In vitro scanning-saturation mutagenesis. Methods in Molecular Biology, 182, 149–163.

    CAS  Google Scholar 

  8. Moreira, I. S., Fernandes, P. A., & Ramos, M. J. (2007). Computational alanine scanning mutagenesis—an improved methodological approach. Journal of Computational Chemistry, 28, 644–654.

    Article  CAS  Google Scholar 

  9. Morrison, K. L., & Weiss, G. A. (2001). Combinatorial alanine-scanning. Current Opinion in Chemical Biology, 5, 302–307.

    Article  CAS  Google Scholar 

  10. Gibbs, C. S., & Zoller, M. J. (1991). Identification of electrostatic interaction that determine the phosphorylation site specificity of the camp-dependent protein kinase. Biochemistry, 30, 5329–5334.

    Article  CAS  Google Scholar 

  11. Blaber, M., Baase, W. A., Gassner, N., & Matthews, B. W. (1995). Alanine scanning mutagenesis of the alpha-helix 115–123 of phage T4 lysozyme: effects on structure, stability and the binding of solvent. Journal of Molecular Biology, 246, 317–330.

    Article  CAS  Google Scholar 

  12. Pezzullo, M., Del Vecchio, P., Mandrich, L., Nucci, R., Rossi, M., & Manco, G. (2013). Comprehensive analysis of surface charged residues involved in thermal stability in Alicyclobacillus acidocaldarius esterase 2. Protein Engineering Design and Selection, 26(1), 47–58.

    Article  CAS  Google Scholar 

  13. Timucin, E., & Sezerman, O. U. (2013). The conserved lid tryptophan, W211, potentiates thermostability and thermoactivity in bacterial thermoalkalophilic lipases. PloS One, 8(12), 1–17.

    Article  Google Scholar 

  14. Gudiukaitė, R., Gegeckas, A., Kazlauskas, D., & Citavicius, D. (2014). Influence of N- and/or C-terminal regions on activity, expression, characteristics and structure of lipase from Geobacillus sp. 95. Extremophiles, 18(1), 131–145.

    Article  Google Scholar 

  15. Sambrook, J., & Rusell, D. W. (2001). Molecular cloning: a laboratory manual. New York: Cold Spring Harbor Lab Press.

    Google Scholar 

  16. Crooks, G. E., Hon, G., Chandonia, J. M., & Brenner, S. E. (2004). WebLogo: a sequence logo generator. Genome Research, 14, 1188–1190.

    Article  CAS  Google Scholar 

  17. Wiederstein, M., & Sippl, M. J. (2007). ProSA-web:interactive web service for the recognition of errors in three-dimensional structures of protein. Nucleic Acids Research, 35, 407–410.

    Article  Google Scholar 

  18. Olechnovič, K., Kulberkytė, E., & Venclovas, Č. (2013). CAD-score: a new contact area difference-based function for evaluation of protein structural models. Proteins, 81(1), 149–162.

    Article  Google Scholar 

  19. Laemmly, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 380–685.

    Google Scholar 

  20. Leow, T. C., Rahman, R. N. Z. R. A., Basri, M., & Salleh, A. B. (2007). A thermoalkaliphilic lipase of Geobacillus sp. T1. Extremophiles, 11, 527–535.

    Article  CAS  Google Scholar 

  21. Jiang, Y., Zhou, X., & Chen, Z. (2010). Cloning, expression, and biochemical characterization of a thermostable lipase from Geobacillus stearothermophilus JC. World Journal of Microbiology and Biotechnology, 26, 747–751.

    Article  CAS  Google Scholar 

  22. Chakravorty, D., Parameswaran, S., Dubey, V. K., & Patra, S. (2011). In silico characterization of thermostable lipases. Extremophiles, 15(1), 89–103.

    Article  CAS  Google Scholar 

  23. Carrasco-Lopez, C., Godoy, C., de las Rivas, B., Fernandez-Lorente, G., Palomo, J. M., Guisan, J. M., Fernandez-Lafuente, R., Martinez-Ripoll, M., & Hermoso, J. A. (2009). Activation of bacterial thermoalkalophilic lipases is spurred by dramatic structural rearrangements. JBC, 284(7), 4365–4372.

    Article  CAS  Google Scholar 

  24. Tyndall, J. D. A., Sinchaikul, S., Fothergill-Gilmore, L. A., Taylor, P., & Walkinshaw, M. D. (2002). Crystal structure of a thermostable lipase from Bacillus stearothermophilus P1. Journal of Molecular Biology, 323, 859–869.

    Article  CAS  Google Scholar 

  25. Abdul Rahman, M. Z., Salleh, A. B., Abdul Rahman, R. N., Abdul Rahman, M. B., Basri, M., & Leow, T. C. (2012). Unlocking the mystery behind the activation phenomenon of T1 lipase: a molecular dynamics simulations approach. Protein Sciences, 21(8), 1210–1221.

    Article  CAS  Google Scholar 

  26. Goodarzi, N., Karkhane, A. A., Mirlohi, A., Tabandeh, F., Torktas, I., Aminzadeh, S., Yakhchali, B., Shamsara, M., & Ghafouri, M. A. (2014). Protein engineering of Bacillus thermocatenulatus lipase via deletion of the α5 helix. Applied Biochemistry and Biotechnology, 174(1), 339–351.

    Article  CAS  Google Scholar 

  27. Jeong, S. T., Kim, H. K., Kim, S. J., Chi, S. W., Pan, J. G., Oh, T. K., & Ryu, S. E. (2002). Novel zinc-binding center and a temperature switch in the Bacillus stearothermophilus L1 lipase. Journal of Biological Chemistry, 277(19), 17041–17047.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the MITA (Agency of Science, Innovation and Technology) program “Development of industrial biotechnology in Lithuania 2011-2013,” project “Innovative tools for cosmetic industry (COSMETIZYM),” Grant No. MITA 31V-18.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renata Gudiukaitė.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

The C-score of GD-95-10 lipase and its mutant 3D models in ProSA-web server (DOC 31 kb)

Table S2

Interactions changes of important amino acids in mutated lipase structures. + - contact detectable; - relationships not detectable (DOC 323 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gudiukaitė, R., Gegeckas, A., Sadauskas, M. et al. Detection of Asp371, Phe375, and Tyr376 Influence on GD-95-10 Lipase Using Alanine Scanning Mutagenesis. Appl Biochem Biotechnol 178, 654–669 (2016). https://doi.org/10.1007/s12010-015-1900-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1900-z

Keywords

Navigation