Skip to main content
Log in

Novel Mutations of Low-Density Lipoprotein Receptor Gene in China Patients with Familial Hypercholesterolemia

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Familial hypercholesterolaemia (FH) is an autosomal dominant genetic disorder, associated with elevated level of serum low-density lipoprotein-cholesterol (LDL-C), which can lead to premature cardiovascular disease (CVD). Mutations in low density lipoprotein receptor (LDLR) and proprotein convertase subtilisin/kexin type 9 (PCSK9) have been identified to be the underlying cause of this disease. Genetic research of FH has already been extensively studied all over the world. However, reports of FH mutations in the Chinese population are still limited. In this paper, 20 unrelated FH families were enrolled to detect the candidate gene variants in Chinese FH population by DNA direct sequencing. We identified 12 LDLR variants in 13 FH probands. Importantly, we first reported two unique mutations (c.2000_2000 delG/p.C667LfsX6 and c.605T>C/p.F202S) in LDLR gene. Our discoveries expand the spectrum of LDLR mutations and contribute to the genetic diagnosis and counseling for FH patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lye, S. H., Chahil, J. K., Bagali, P., et al. (2013). Genetic polymorphisms in LDLR, APOB, PCSK9 and other lipid related genes associated with familial hypercholesterolemia in Malaysia. PLoS ONE, 8(4), e60729.

    Article  CAS  Google Scholar 

  2. Hovingh, G. K., Davidson, M. H., Kastelein, J. J., & O'Connor, A. M. (2013). Diagnosis and treatment of familial hypercholesterolaemia. European Heart Journal, 34(13), 962–971.

    Article  CAS  Google Scholar 

  3. Chiou, K. R., & Charng, M. J. (2012). Common mutations of familial hypercholesterolemia patients in Taiwan: characteristics and implications of migrations from southeast China. Gene, 498(1), 100–106.

    Article  CAS  Google Scholar 

  4. Alicezah, M. K., Razali, R., Rahman, T., et al. (2014). Homozygous familial hypercholesterolemia. The Malaysian Journal of Pathology, 36(2), 131–137.

    CAS  Google Scholar 

  5. Mollaki, V., Progias, P., & Drogari, E. (2014). Familial hypercholesterolemia in Greek children and their families: genotype-to-phenotype correlations and a reconsideration of LDLR mutation spectrum. Atherosclerosis, 237(2), 798–804.

    Article  CAS  Google Scholar 

  6. Mabuchi, H., Nohara, A., Noguchi, T., et al. (2014). Genotypic and phenotypic features in homozygous familial hypercholesterolemia caused by proprotein convertase subtilisin/kexin type 9 (PCSK9) gain-of-function mutation. Atherosclerosis, 236(1), 54–61.

    Article  CAS  Google Scholar 

  7. Alves, A. C., Etxebarria, A., Soutar, A. K., Martin, C., & Bourbon, M. (2014). Novel functional APOB mutations outside LDL-binding region causing familial hypercholesterolaemia. Human Molecular Genetics, 23(7), 1817–1828.

    Article  CAS  Google Scholar 

  8. Hooper, A. J., Nguyen, L. T., Burnett, J. R., et al. (2012). Genetic analysis of familial hypercholesterolaemia in Western Australia. Atherosclerosis, 224(2), 430–434.

    Article  CAS  Google Scholar 

  9. Costelloe, S. J., El-Sayed, M. J. S., Drenos, F., et al. (2012). Gene-targeted analysis of copy number variants identifies 3 novel associations with coronary heart disease traits. Circulation. Cardiovascular Genetics, 5(5), 555–560.

    Article  CAS  Google Scholar 

  10. Kathiresan, S., Voight, B. F., Purcell, S., et al. (2009). Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nature Genetics, 41(3), 334–341.

    Article  CAS  Google Scholar 

  11. Chiu, C. Y., Wu, Y. C., Jenq, S. F., & Jap, T. S. (2005). Mutations in low-density lipoprotein receptor gene as a cause of hypercholesterolemia in Taiwan. Metabolism, 54(8), 1082–1086.

    Article  CAS  Google Scholar 

  12. Al-Rasadi, K., Al-Waili, K., Al-Zidi, W. A., et al. (2014). Low-density lipoprotein receptor gene mutation analysis and structure-function correlation in an Omani Arab family with familial hypercholesterolemia. Angiology, 65(10), 911–918.

    Article  CAS  Google Scholar 

  13. Dai, Y. F., Sun, L. Y., Zhang, X. B., & Wang, L. Y. (2011). Research progression of LDLR mutations in Chinese familial hypercholesterolemia. Yi Chuan, 33(1), 1–8.

    Article  Google Scholar 

  14. Xiang, R., Fan, L. L., Huang, H., et al. (2013). A novel mutation of GATA4 (K319E) is responsible for familial atrial septal defect and pulmonary valve stenosis. Gene.

  15. Sunyaev, S., Ramensky, V., & Bork, P. (2000). Towards a structural basis of human non-synonymous single nucleotide polymorphisms. Trends in Genetics, 16(5), 198–200.

    Article  CAS  Google Scholar 

  16. Ng, P. C., & Henikoff, S. (2003). SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Research, 31(13), 3812–3814.

    Article  CAS  Google Scholar 

  17. Schwarz, J. M., Rodelsperger, C., Schuelke, M., & Seelow, D. (2010). MutationTaster evaluates disease-causing potential of sequence alterations. Nature Methods, 7(8), 575–576.

    Article  CAS  Google Scholar 

  18. Robinson, J. G. (2013). Management of familial hypercholesterolemia: a review of the recommendations from the National Lipid Association Expert Panel on Familial Hypercholesterolemia. Journal of Managed Care Pharmacy, 19(2), 139–149.

    Google Scholar 

  19. Chang, J. H., Pan, J. P., Tai, D. Y., et al. (2003). Identification and characterization of LDL receptor gene mutations in hyperlipidemic Chinese. Journal of Lipid Research, 44(10), 1850–1858.

    Article  CAS  Google Scholar 

  20. Mak, Y. T., Pang, C. P., Tomlinson, B., et al. (1998). Mutations in the low-density lipoprotein receptor gene in Chinese familial hypercholesterolemia patients. Arteriosclerosis, Thrombosis, and Vascular Biology, 18(10), 1600–1605.

    Article  CAS  Google Scholar 

  21. Jørgensen, A. B., Frikke-Schmidt, R., et al. (2014). Loss-of-function mutations in APOC3 and risk of ischemic vascular disease. The New England Journal of Medicine, 371(1), 32–41.

    Article  Google Scholar 

  22. Lange, L. A., Hu, Y., Zhang, H., et al. (2014). Whole-exome sequencing identifies rare and low-frequency coding variants associated with LDL cholesterol. The American Journal of Human Genetics, 94(2), 233–245.

    Article  CAS  Google Scholar 

  23. Gent, J., & Braakman, I. (2004). Low-density lipoprotein receptor structure and folding. Cellular and Molecular Life Sciences, 61(19–20), 2461–2470.

    Article  CAS  Google Scholar 

  24. Tan, Z. P., Xie, L., Deng, Y., et al. (2014). Whole-exome sequencing identifies Y1495X of SCN5A to be associated with familial conduction disease and sudden death. Scientific Reports, 4, 5616.

    CAS  Google Scholar 

  25. Mabuchi, H., Nohara, A., Noguchi, T., et al. (2011). Molecular genetic epidemiology of homozygous familial hypercholesterolemia in the Hokuriku district of Japan. Atherosclerosis, 214(2), 404–407.

    Article  CAS  Google Scholar 

  26. Soufi, M., Rust, S., Walter, M., et al. (2013). A combined LDL receptor/LDL receptor adaptor protein 1 mutation as the cause for severe familial hypercholesterolemia. Gene, 521(1), 200–203.

    Article  CAS  Google Scholar 

  27. Tosi, I., Toledo-Leiva, P., Neuwirth, C., et al. (2007). Genetic defects causing familial hypercholesterolaemia: identification of deletions and duplications in the LDL-receptor gene and summary of all mutations found in patients attending the Hammersmith Hospital Lipid Clinic. Atherosclerosis, 194(1), 102–111.

    Article  CAS  Google Scholar 

  28. Bochem, A. E., Holleboom, A. G., Romijn, J. A., et al. (2014). Adrenal function in females with low plasma HDL-C due to mutations in ABCA1 and LCAT. PLoS ONE, 9(5), e90967.

    Article  Google Scholar 

Download references

Acknowledgments

We thank the patients and their families for participating in this study. We thank the Center of Clinical Gene Diagnosis and Therapy of the State Key Laboratory of Medical Genetics of China for technical assistance. This study was supported by the National Natural Science Foundation of China (81370394), the National Basic Research Program of China (973 Program) (2012CB517900), and the Fundamental Research Funds for Central Universities of Central South University (2014zzts284, 2014zzts086).

Conflict of Interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kun Xia, Shui-ping Zhao or Rong Xiang.

Additional information

Liang-liang Fan and Min-jie Lin contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 46 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Ll., Lin, Mj., Chen, Yq. et al. Novel Mutations of Low-Density Lipoprotein Receptor Gene in China Patients with Familial Hypercholesterolemia. Appl Biochem Biotechnol 176, 101–109 (2015). https://doi.org/10.1007/s12010-015-1554-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1554-x

Keywords

Navigation