Skip to main content
Log in

Production and Purification of Anti-Bacterial Biometabolite from Wild-Type Lactobacillus, Isolated from Fermented Bamboo Shoot: Future Suggestions and a Proposed System for Secondary Metabolite Onsite Recovery During Continuous Fermentation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Wild-type lactobacillus isolated form Khorisa, a fermented bamboo shoot product of Assam, India were evaluated for production anti-bacterial secondary biometabolites, against Staphylococcus aureus. Submerged fermentation technique was used for the production of secondary anti-microbial biometabolite by a single wild-type lactobacillus strain, which tested positive for the release of anti-bacterial factor(s). Crude cell-free supernatant was obtained, followed by extraction in water-immiscible solvents viz., chloroform, hexane, petroleum ether. Chloroform extract of cell-free crude supernatant showed maximum yield (0.054 g/ml) and inhibited all indicator bacterial strains viz., Escherichia coli, Staphylococcus aureus, and Bacillus cereus. Yields of hexane and petroleum ether extract were 0.052 and 0.026 g/ml, respectively. Minimum lethal dose concentration assay of the chloroform extract showed LDmin values at 27, 1.68, and 1.68 mg/ml for E. coli, S. aureus, and B. cereus, respectively. Kill time for all the indicator bacterial strains were less than 12 h. The efficacy of the anti-bacterial substance seemed to depend on the presence of organic acids, particularly lactic acid. Conceptual-based suggestion for the development of an onsite secondary metabolites recovery system during continuous fermentation has also been attempted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CFCS:

Cell-free crude supernatant

CFPS:

Cell-free purified supernatant

LDmin :

Minimum lethal dose concentration

References

  1. Jama, Y. H., & Varadaraj, M. C. (1999). World Journal of Microbiology and Biotechnology, 15, 27–32.

    Article  Google Scholar 

  2. Nes, I. F., & Johnsborg, O. (2004). Current Opinion in Biotechnology, 15, 100–104.

    Article  CAS  Google Scholar 

  3. Musikasang, H., Tani, A., H-kittikun, A., & Maneerat, S. (2009). World Journal of Microbiology and Biotechnology, 25, 1337–1345.

    Article  CAS  Google Scholar 

  4. Kumar, M., Ghosh, M., & Ganguli, A. (2012). World Journal of Microbiology and Biotechnology, 28, 703–711.

    Article  CAS  Google Scholar 

  5. Tsai, C. C., Hsih, H. Y., Chiu, H. H., Lai, Y. Y., Liu, J. H., Yu, B., & Tsen, H. Y. (2005). International Journal of Food Microbiology, 102, 185–194.

    Article  Google Scholar 

  6. Makras, L., Triantafyllou, V., Fayol-Messaoudi, D., Adriany, T., Zoumpopoulou, G., Tsakalidou, E., & De Vuyst, L. (2006). Research in Microbiology, 157, 241–247.

    Article  CAS  Google Scholar 

  7. Karska-Wysocki, B., Bazo, M., & Smoragiewicz, W. (2010). Microbiological Research, 165, 674–686.

    Article  Google Scholar 

  8. Ogawa, M., Shimizu, K., Nomoto, K., Tanaka, R., Hamabata, T., Yamasaki, S., & Takeda, Y. (2001). International Journal of Food Microbiology, 68, 135–140.

    Article  CAS  Google Scholar 

  9. Chen, X., Xu, J., Shuai, J., Chen, J., Zhang, Z., & Fang, W. (2007). International Journal of Food Microbiology, 115, 307–312.

    Article  CAS  Google Scholar 

  10. David, E., & Nirmala, C. (2007). Proceedings of International Conference on Indigenous Vegetables and Legumes. Prospectus for Fighting Poverty, Hunger and Malnutrition 752, pp. 557–562.

  11. Chen, Y. S., Wu, H. C., Liu, C. H., Chen, H. C., & Yanagida, F. (2010). Journal of the Science of Food and Agriculture, 90, 1977–1982.

    CAS  Google Scholar 

  12. Cheeseman, G. C., & Berridge, N. J. (1957). Biochemical Journal, 65, 603–608.

    CAS  Google Scholar 

  13. Abee, T., Gao, F. H., & Konings, W. N. (1991). Nisin and novel lantibiotics, 373–386.

  14. Borah, K. (2012). M. Tech. thesis, Tezpur University, Assam, India.

  15. De Man, J. C., Rogosa, M., & Sharpe, M. E. (1960). Journal of Applied Microbiology, 23, 130–135.

    Google Scholar 

  16. McFarland, J. (1907). Journal of the American Medical Association, 49, 1176–1178.

    Article  Google Scholar 

  17. Harley, J. P. (2004). Laboratory exercises in microbiology (6th ed., pp. 275–278). New York: McGraw Hill.

    Google Scholar 

  18. Khan, J. A., & Patel, A. S. (2011). International Journal of Pharmaceutical Research Development, 3, 63–71.

    CAS  Google Scholar 

  19. Perez, C., Pauli, M., & Bazerque, P. (1990). Acta Biologiae et Medecine Experimentalis, 15, 113–115.

    Google Scholar 

  20. Sánchez-Machado, D. I., López-Cervantes, J., & Martínez-Cruz, O. (2008). Food Technology and Biotechnology, 46, 456–460.

    Google Scholar 

  21. NCCLS (2000). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Approved Standard Fifth Edition. NCCLS document M7-A5. NCCLS: Wayne, PA, USA.

  22. Rovirosa, J., Diaz-Marrero, A. N. A., Darías, J., Painemal, K., & San Martín, A. (2006). Journal of the Chilean Chemical Society, 51, 775–778.

    Article  CAS  Google Scholar 

  23. Abdel-Wahab, M. A., Asolkar, R. N., Inderbitzin, P., & Fenical, W. (2007). Photochemistry, 68, 1212–1218.

    Article  CAS  Google Scholar 

  24. Burianek, L. L., & Yousef, A. E. (2000). Letters in Applied Microbiology, 31, 193–197.

    Article  CAS  Google Scholar 

  25. Alakomi, H. L., Skyttä, E., Saarela, M., Mattila-Sandholm, T., Latva-Kala, K., & Helander, I. M. (2000). Applied and Environmental Microbiology, 66, 2001–2005.

    Article  CAS  Google Scholar 

  26. Cook, S. I., & Sellin, J. H. (1998). Alimentary Pharmacology & Therapeutics, 12, 499.

    Article  CAS  Google Scholar 

  27. Russell, J. B., & Diez-Gonzalez, F. (1997). Advances in Microbial Physiology, 39, 205–234.

    Article  Google Scholar 

  28. Przybytek, J. T. (1980). Solvent Guide (p. 132). Muskegon: Burdick and Jackson Laboratories. Inc.

    Google Scholar 

  29. Breukink, E., & de Kruijff, B. (1999). Biochimica et Biophysica Acta (BBA)-Biomembranes, 1462, 223–234.

    Article  CAS  Google Scholar 

  30. Zhao, W. H., Hu, Z. Q., Okubo, S., Hara, Y., & Shimamura, T. (2001). Antimicrobial Agents and Chemotherapy, 45, 1737–1742.

    Article  CAS  Google Scholar 

  31. Badwaik, L. S., Borah, P. K., & Deka, S. C. (2014). Carbohydrate Polymers, 103, 213–220.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laxmikant S. Badwaik.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 61 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badwaik, L.S., Borah, P.K. & Deka, S.C. Production and Purification of Anti-Bacterial Biometabolite from Wild-Type Lactobacillus, Isolated from Fermented Bamboo Shoot: Future Suggestions and a Proposed System for Secondary Metabolite Onsite Recovery During Continuous Fermentation. Appl Biochem Biotechnol 175, 1915–1925 (2015). https://doi.org/10.1007/s12010-014-1415-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1415-z

Keywords

Navigation