Skip to main content
Log in

Structural Stability and Unfolding Properties of Cutinases from Thermobifida fusca

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A comparative analysis of the structural and functional aspects along with equilibrium unfolding of two homologous cutinases, Cut1 and Cut2, from Thermobifida fusca was carried out. The CD and fluorescence profile at different pH in the range of 6 to 9 showed no structural variations for both cutinases, indicating their stability to a wide range of pH. Tryptophan quenching studies suggested that all the four Trp residues in the protein are in inaccessible hydrophobic pockets. Further, near-UV CD analysis of tertiary structure revealed a dissimilar distribution of aromatic amino acid on the surface of these two enzymes. Denaturation profiles obtained in aqueous solutions of the guanidine hydrochloride revealed different tolerance levels for unfolding of the two cutinases, with Cut2 showing higher resistivity to unfolding in comparison to Cut1. Both cutinases retained all the structural parameters even in the presence of 8 M urea, indicating the protein to be highly resistant to urea-induced unfolding. Structural study by homology modeling revealed a high resemblance of secondary structure between the two cutinases; however, their tertiary structure, hydrophobicity, and surface electrostatic properties were very different, which contributed to the difference in the structural stability of these two cutinases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mogk, A., Mayer, M. P., & Deuerling, E. (2002). Chembiochem, 3, 807–514.

    Article  CAS  Google Scholar 

  2. Pace, C. N. (1986). Methods in enzymology. New York: Academic.

    Google Scholar 

  3. Anfinsen, C. B. (1973). Science, 181, 223–230.

    Article  CAS  Google Scholar 

  4. Fitter, J., & Haber-Pohlmeier, S. (2004). Biochemistry, 43, 9589–9599.

    Article  CAS  Google Scholar 

  5. Beadle, B. M., Baase, W. A., Wilson, D. B., Gilkes, N. R., & Shoichet, B. K. (1999). Biochemistry, 38, 2570–2576.

    Article  CAS  Google Scholar 

  6. Georlette, D., Blaise, V., Collins, T., D'Amico, S., Gratia, E., Hoyoux, A., Marx, J. C., Sonan, G., Feller, G., & Gerday, C. (2004). FEMS Microbiology Review, 28, 25–42.

    Article  CAS  Google Scholar 

  7. Jaenicke, R., Schurig, H., Beaucamp, N., & Ostendorp, R. (1996). Structure and stability of hyperstable proteins: Glycolytic enzymes from hyperthermophilic bacterium Thermotoga maritima. In M. W. W. Adams (Ed.), Advances in protein chemistry, vol 48: Enzymes and proteins from hyperthermophilic microorganisms (pp. 181–269). New York: Academic.

    Google Scholar 

  8. Miyazaki, K., Wintrode, P. L., Grayling, R. A., Rubingh, D. N., & Arnold, F. H. (2000). Journal of Molecular Biology, 297, 1015–1026.

    Article  CAS  Google Scholar 

  9. Perl, D., Mueller, U., Heinemann, U., & Schmid, F. X. (2000). Nature Structural & Molecular Biology, 7, 380–383.

    Article  CAS  Google Scholar 

  10. Wallon, G., Kryger, G., Lovett, S. T., Oshima, T., Ringe, D., & Petsko, G. A. (1997). Journal of Molecular Biology, 266, 1016–1031.

    Article  CAS  Google Scholar 

  11. Cavagnero, S., Debe, D. A., Zhou, Z. H., Adams, M. W. H., & Chan, S. I. (1998). Biochemistry, 37, 3369–3376.

    Article  CAS  Google Scholar 

  12. Augustyniak, W., Brzezinska, A. A., Pijning, T., Wienk, H., Boelens, R., Dijkstra, B. W., & Reetz, M. T. (2012). Protein Science, 21, 487–497.

    Article  CAS  Google Scholar 

  13. Gershenson, A., Schauerte, J. A., Giver, L., & Arnold, F. H. (2000). Biochemistry, 39, 4658–4665.

    Article  CAS  Google Scholar 

  14. Ternstrom, T., Svendsen, A., Akke, M., & Adlercreutz, P. (2005). Biochimica Biophysica Acta-Proteins Proteomics, 1748, 74–83.

    Article  Google Scholar 

  15. Vieille, C., & Zeikus, G. J. (2001). Microbiology and Molecular Biology Reviews, 65, 1–43.

    Article  CAS  Google Scholar 

  16. Kumar, S., Tsai, C. J., & Nussinov, R. (2000). Protein Engineering, 13, 179–191.

    Article  CAS  Google Scholar 

  17. Nielsen, J. E., & Borchert, T. V. (2000). Biochimica Biophysica Acta- Protein Structure and Molecular Enzymology, 1543, 253–274.

    Article  CAS  Google Scholar 

  18. Zavodszky, P., Kardos, J., Svingor, A., & Petsko, G. A. (1998). Proceedings of the National Academy of Sciences of the United States of America, 95, 7406–7411.

    Article  CAS  Google Scholar 

  19. Purdy, R. E., & Kolattukudy, P. E. (1975). Biochemistry, 14, 2832–2840.

    Article  CAS  Google Scholar 

  20. Dutta, K., Krishnamoorthy, H., & Dasu, V. V. (2013). Journal of General and Applied Microbiology, 59, 171–184.

    Article  CAS  Google Scholar 

  21. Egmond, M. R., & de Vlieg, J. (2000). Biochimie, 82, 1015–1021.

    Article  CAS  Google Scholar 

  22. Fett, W. F., Gerard, H. C., Moreau, R. A., Osman, S. F., & Jones, L. E. (1992). Applied and Environmental Microbiology, 58, 2123–2130.

    CAS  Google Scholar 

  23. Hegde, K., & Veeranki, V. D. (2013). Applied Biochemistry and Biotechnology, 170, 654–675.

    Article  CAS  Google Scholar 

  24. Maeda, H., Yamagata, Y., Abe, K., Hasegawa, F., Machida, M., Ishioka, R., Gomi, K., & Nakajima, T. (2005). Applied Microbiology and Biotechnology, 67, 778–788.

    Article  CAS  Google Scholar 

  25. Skamnioti, P., Furlong, R. F., & Gurr, S. J. (2008). New Phytologist, 180, 711–721.

    Article  CAS  Google Scholar 

  26. Dutta, K., & Dasu, V. V. (2011). Journal of Molecular Catalysis B: Enzymatic, 72, 150–156.

    Article  CAS  Google Scholar 

  27. Araujo, R., Silva, C., O'Neill, A., Micaelo, N., Guebitz, G., Soares, C. M., Casal, M., & Cavaco-Paulo, A. (2007). Journal of Biotechnology, 128, 849–857.

    Article  CAS  Google Scholar 

  28. Ribitsch, D., Yebra, A. O., Zitzenbacher, S., Wu, J., Nowitsch, S., Steinkellner, G., Greimel, K., Doliska, K., Oberdorfer, G., Gruber, C. C., Gruber, K., Schwab, H., Stana-Kleinschek, K., Acero, E. H., & Guebitz, G. M. (2013). Biomacromolecules, 14, 1769–1776.

    Article  CAS  Google Scholar 

  29. Degani, O., Gepstein, S., & Dosoretz, C. G. (2002). Applied Biochemistry and Biotechnology, 102, 277–289.

    Article  Google Scholar 

  30. Kim, Y. H., Ahn, J. Y., Moon, S. H., & Lee, J. (2005). Chemosphere, 60, 1349–1355.

    Article  CAS  Google Scholar 

  31. Dutta, K., Sen, S., & Veeranki, V. D. (2009). Process Biochemistry, 44, 127–134.

    Article  CAS  Google Scholar 

  32. Bellamy, W. D. (1977). Microbiology, 18, 249–254.

    Google Scholar 

  33. Lykidis, A., Mavromatis, K., Ivanova, N., Anderson, I., Land, M., DiBartolo, G., Martinez, M., Lapidus, A., Lucas, S., Copeland, A., Richardson, P., Wilson, D. B., & Kyrpides, N. (2007). Journal of Bacteriology, 189, 2477–2486.

    Article  CAS  Google Scholar 

  34. Eswar, N., John, B., Mirkovic, N., Fiser, A., Ilyin, V. A., Pieper, U., Stuart, A. C., Marti-Renom, M. A., Madhusudhan, M. S., Yerkovich, B., & Sali, A. (2003). Nucleic Acids Research, 31, 3375–3380.

    Article  CAS  Google Scholar 

  35. Sali, A., & Blundell, T. L. (1993). Journal of Molecular Biology, 234, 779–815.

    Article  CAS  Google Scholar 

  36. Guex, N., & Peitsch, M. C. (1997). Electrophoresis, 18, 2714–2723.

    Article  CAS  Google Scholar 

  37. Laskowski, R. A., Macarthur, M. W., Moss, D. S., & Thornton, J. M. (1993). Journal of Applied Crystallography, 26, 283–291.

    Article  CAS  Google Scholar 

  38. Dolinsky, T. J., Nielsen, J. E., McCammon, J. A., & Baker, N. A. (2004). Nucleic Acids Research, 32, W665–W667.

    Article  CAS  Google Scholar 

  39. Willard, L., Ranjan, A., Zhang, H., Monzavi, H., Boyko, R. F., Sykes, B. D., & Wishart, D. S. (2003). Nucleic Acids Research, 31, 3316–3319.

    Article  CAS  Google Scholar 

  40. Cowgill, R. W. (1975). Biochemical fluorescence concepts (Vol. 2). New York: Marcel Dekker.

    Google Scholar 

  41. Malavasic, M., Poklar, N., Macek, P., & Vesnaver, G. (1996). Fluorescence studies of the effect of pH, guanidine hydrochloride and urea on equinatoxin II conformation. Biochimica Biophysica Acta Biomembrane, 1280, 65–72.

    Article  Google Scholar 

  42. Kelly, S. M., & Price, N. C. (2000). Current Protein and Peptide Science, 1, 349–384.

    Article  CAS  Google Scholar 

  43. Kitadokoro, K., Thumarat, U., Nakamura, R., Nishimura, K., Karatani, H., Suzuki, H., & Kawai, F. (2012). Polymer Degradation and Stability, 97, 771–775.

    Article  CAS  Google Scholar 

  44. Liu, Z. Q., Gosser, Y., Baker, P. J., Ravee, Y., Lu, Z. Y., Alemu, G., Li, H. G., Butterfoss, G. L., Kong, X. P., Gross, R., & Montclare, J. K. (2009). Journal of American Chemical Society, 131, 15711–15716.

    Article  CAS  Google Scholar 

  45. Longhi, S., Czjzek, M., Lamzin, V., Nicolas, A., & Cambillau, C. (1997). Journal of Molecular Biology, 268, 779–799.

    Article  CAS  Google Scholar 

  46. Inouye, K., Tanaka, H., & Oneda, H. (2000). Journal of Biological Chemistry, 128, 363–369.

    CAS  Google Scholar 

  47. Inui, T., Ohkubo, T., Emi, M., Irikura, D., Hayaishi, O., & Urade, Y. (2003). Journal of Biological Chemistry, 278, 2845–2852.

    Article  CAS  Google Scholar 

  48. Mayr, L. M., & Schmid, F. X. (1993). Biochemistry, 32, 7994–7998.

    Article  CAS  Google Scholar 

  49. Ahmad, A., Akhtar, M. S., & Bhakuni, V. (2001). Biochemistry, 40, 1945–1955.

    Article  CAS  Google Scholar 

  50. Monera, O. D., Kay, C. M., & Hodges, R. S. (1994). Protein Science, 3, 1984–1991.

    Article  CAS  Google Scholar 

  51. Dubey, V. K., & Jagannadham, M. V. (2003). Biochemistry, 42, 12287–12297.

    Article  CAS  Google Scholar 

  52. Shandar, A., Michael, G. M., Fawareh, H., & Sarai, A. (2004). BMC Bioinformatics, 5, 51. doi:10.1186/1471-2105-5-51.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge a financial support from DST through project for carrying out the experiments, Prof. Sauman Basak, SINP, Kolkata, and DBT for sponsored instrumentation facility, IIT Guwahati, for providing CD spectroscopy facility, Ms. Maupriya SINP, Kolkata, and Dr. Mohitosh, IIT Guwahati, for their assistance in carrying out CD spectroscopy, and Ms. Debomitra, IIT Guwahati, for her valuable suggestions in carrying out structural homology modeling of protein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veeranki Venkata Dasu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 173 kb)

ESM 2

(DOC 967 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hegde, K., Dasu, V.V. Structural Stability and Unfolding Properties of Cutinases from Thermobifida fusca . Appl Biochem Biotechnol 174, 803–819 (2014). https://doi.org/10.1007/s12010-014-1037-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1037-5

Keywords

Navigation