Skip to main content
Log in

Experimental Investigation and Optimization of Process Variables Affecting the Production of Extracellular Lipase by Kluyveromyces marxianus IFO 0288

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, the production and optimization of extracellular lipase from Kluyveromyces marxianus IFO 0288 was investigated by using optimized nutritional and cultural conditions in a yeast medium containing glucose as the carbon source in fully aerobic batch fermentation (150 rpm). The influence of four fermentation parameters (type of lipidic source, initial culture pH, temperature, and length of fermentation) on growth and lipase production was investigated and evaluated using the conventional “one variable at a time” approach and response surface methodology. An 18-fold increase in lipase production during 65 h of fermentation was obtained with optimized nutritional (0.5 % olive oil) and cultivation (pH 6.5, 35 °C) conditions by employing the conventional optimization method. By applying the response surface methodology technique the initial pH value of 6.4 and temperature of 32.5 °C were identified as optimal and led to further improvements (up to 18-fold) of extracellular lipase production. The results provide, for the first time, evidence that K. marxianus has the potential to be used as an efficient producer of extracellular lipase with prospective application in a variety of industrial and biotechnological areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gerritse, G., Hommes, R. W., & Quax, W. J. (1998). Applied and Environmental Microbiology, 64, 2644–2651.

    CAS  Google Scholar 

  2. Houde, A., Kademi, A., & Leblanc, D. (2004). Applied Biochemistry and Biotechnology, 118, 155–170.

    Article  CAS  Google Scholar 

  3. Maugard, T., Rejasse, B., & Legoy, M. D. (2002). Biotechnology Progress, 18, 424–428.

    Article  CAS  Google Scholar 

  4. Patel, R. K., Mital, D., & Singh, S. (2005). Process Biochemistry, 40, 3569–3575.

    Article  CAS  Google Scholar 

  5. Pandey, A., Benjamin, S., Soccol, C. R., Nigam, P., Krieger, N., & Soccol, V. T. (1999). Biotechnology and Applied Biochemistry, 29, 119–131.

    CAS  Google Scholar 

  6. Deive, F. J., Costas, M., & Longo, M. A. (2003). Biotechnology Letters, 25, 1403–1406.

    Article  CAS  Google Scholar 

  7. George, E., Tamerler, C., Martinez, A., Martinez, M. J., & Keshavarz, T. (1999). Journal of Chemical Technology and Biotechnology, 74, 137–140.

    Article  CAS  Google Scholar 

  8. Rathi, P., Sapna, B., Sexena, R., & Gupta, R. (2000). Biotechnology Letters, 22, 495–498.

    Article  CAS  Google Scholar 

  9. He, Y. Q., & Tan, T. W. (2006). Journal of Molecular Catalysis B: Enzymatic, 43, 99–125.

    Article  Google Scholar 

  10. Elibol, M. (2004). Process Biochemistry, 39, 1057–1062.

    Article  CAS  Google Scholar 

  11. Kokkinou, M., Theodorou, L. G., & Papamichael, E. M. (2012). Brazilian Archives of Biology and Technology, 55, 231–236.

    Article  CAS  Google Scholar 

  12. Sharma, R., Chisti, Y., & Banerjee, U. C. (2001). Biotechnology Advances, 19, 627–662.

    Article  CAS  Google Scholar 

  13. Khuri, A. I., & Cornell, J. A. (1996). Response surfaces: designs and analysis. New York: Marcel Dekker, ASQA.

    Google Scholar 

  14. Singh, A., Kuila, A., Yadav, G., & Banerjee, R. (2011). Food Technology and Biotechnology, 49, 322–328.

    CAS  Google Scholar 

  15. Design Expert (Statistical Package Software), trial v. 8.0.7.1, Stat-Ease Inc., Minneapolis, MN, USA (2012) Available from: http://www.statease.com.

  16. Fonseca, G. G., Heinzle, E., Wittmann, C., & Gombert, A. K. (2008). Applied Microbiology and Biotechnology, 79, 339–354.

    Article  CAS  Google Scholar 

  17. Lane, M. M., & Morrissey, J. P. (2010). Fungal Biology Reviews, 24, 17–26.

    Article  Google Scholar 

  18. Benjamin, S., & Pandey, A. (1998). Yeast, 14, 1069–1087.

    Article  CAS  Google Scholar 

  19. Vakhlu, J., & Kour, A. (2006). Electronic Journal of Biotechnology, 9, 69–85.

    Article  CAS  Google Scholar 

  20. Soares, C. M. F., De Castro, H. F., Moraes, F. F., & Zanin, G. M. (1999). Applied Biochemistry and Biotechnology, 79, 745–757.

    Article  Google Scholar 

  21. Garlapati, V. K., Vundavilli, P. R., & Banerjee, R. (2010). Applied Biochemistry and Biotechnology, 162, 1350–1361.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Prof. A. Koutinas of the Dept. of Chemistry, University of Patras, Greece for kindly providing the K. marxianus strain used in this work

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel M. Papamichael.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stergiou, PY., Foukis, A., Sklivaniti, H. et al. Experimental Investigation and Optimization of Process Variables Affecting the Production of Extracellular Lipase by Kluyveromyces marxianus IFO 0288. Appl Biochem Biotechnol 168, 672–680 (2012). https://doi.org/10.1007/s12010-012-9808-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9808-3

Keywords

Navigation