Skip to main content

Advertisement

Log in

Improvement of Hydrogen Productivity by Introduction of NADH Regeneration Pathway in Clostridium paraputrificum

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

To improve the hydrogen productivity and examine the hydrogen evolution mechanism of Clostridium paraputrificum, roles of formate in hydrogen evolution and effects of introducing formate-originated NADH regeneration were explored. The formate-decomposing pathway for hydrogen production was verified to exist in C. paraputrificum. Then NAD+-dependent formate dehydrogenase FDH1 gene (fdh1) from Candida boidinii was overexpressed, which regenerate more NADH from formate to form hydrogen by NADH-mediated pathway. With fdh1 overexpression, the hydrogen yield via NADH-involving pathway increased by at least 59 % compared with the control. Accompanied by the change of hydrogen metabolism, the whole cellular metabolism was redistributed greatly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ferchichi, M., Crabbe, E., Gil, G. H., Hintz, W., & Almadidy, A. (2005). Influence of initial pH on hydrogen production from cheese whey. Journal of Biotechnology, 120, 402–409.

    Article  CAS  Google Scholar 

  2. Kraemer, J. T., & Bagley, D. M. (2007). Improving the yield from fermentative hydrogen production. Biotechnology Letters, 29, 685–695.

    Article  CAS  Google Scholar 

  3. Woodward, J., Mattingly, S. M., Danson, M., Hough, D., Ward, N., & Adams, M. (1996). In vitro hydrogen production by glucose dehydrogenase and hydrogenase. Nature Biotechnology, 14, 872–874.

    Article  CAS  Google Scholar 

  4. Zhang, Y. H., Evans, B. R., Mielenz, J. R., Hopkins, R. C., & Adams, M. W. (2007). High-yield hydrogen production from starch and water by a synthetic enzymatic pathway. PLoS One, 2, e456.

    Article  Google Scholar 

  5. Davila-Vazquez, G., Arriaga, S., Alatriste-Mondragón, F., de León-Rodríguez, A., Rosales-Colunga, L. M., & Razo-Flores, E. (2008). Fermentative biohydrogen production: trends and perspectives. Reviews in Environmental Science and Biotechnology, 7, 27–45.

    Article  CAS  Google Scholar 

  6. Evvyernie, D., Yamazaki, S., Morimoto, K., Karita, S., Kimura, T., Sakka, K., et al. (2000). Identification and characterization of Clostridium paraputrificum M-21, a chitinolytic, mesophilic and hydrogen-producing bacterium. Journal of Bioscience and Bioengineering, 89, 596–601.

    Article  CAS  Google Scholar 

  7. Evvyernie, D., Morimoto, K., Karita, S., Kimura, T., Sakka, K., & Ohmiya, K. (2001). Conversion of chitinous wastes to hydrogen gas by Clostridium paraputrificum M-21. Journal of Bioscience and Bioengineering, 91, 339–343.

    CAS  Google Scholar 

  8. Lu, Y., Lai, Q. H., Zhang, C., Zhao, H. X., Ma, K., Zhao, X. B., et al. (2009). Characteristics of hydrogen and methane production from cornstalks by an augmented two- or three-stage anaerobic fermentation process. Bioresource Technology, 100, 2889–2895.

    Article  CAS  Google Scholar 

  9. Zhang, Y. H. P. (2011). Simpler is better: high-yield and potential low-cost biofuels production through cell-free synthetic pathway biotransformation (SyPaB). ACS Catalysis, 1, 998–1009.

    Article  CAS  Google Scholar 

  10. Chen, X., Sun, Y. Q., Xiu, Z. L., Li, X. H., & Zhang, D. J. (2006). Stoichiometric analysis of biological hydrogen production by fermentative bacteria. International Journal of Hydrogen Energy, 31, 539–549.

    Article  CAS  Google Scholar 

  11. Lu, Y., Zhao, H. X., Zhang, C., Lai, Q. H., & Xing, X. H. (2009). Perturbation of formate pathway for hydrogen production by expressions of formate hydrogen lyase and its transcriptional activator in wild Enterobacter aerogenes and its mutants. International Journal of Hydrogen Energy, 34, 5072–5079.

    Article  CAS  Google Scholar 

  12. Sawers, R. G. (2005). Formate and its role in hydrogen production in Escherichia coli. Biochemical Society Transactions, 33, 42–46.

    Article  CAS  Google Scholar 

  13. Yoshida, A., Nishimura, T., Kawaguchi, H., Inui, M., & Yukawa, H. (2005). Enhanced hydrogen production from formic acid by formate hydrogen lyase-overexpressing Escherichia coli strains. Applied and Environmental Microbiology, 71, 6762–6768.

    Article  CAS  Google Scholar 

  14. Morimoto, K., Kimura, T., Sakka, K., & Ohmiya, K. (2005). Overexpression of a hydrogenase gene in Clostridium paraputrificum to enhance hydrogen gas production. FEMS Microbiology Letters, 246, 229–234.

    Article  CAS  Google Scholar 

  15. Lu, Y., Zhao, H. X., Zhang, C., Lai, Q. H., Wu, X., & Xing, X. H. (2009). Expression of NAD+ dependent formate dehydrogenase in Enterobacter aerogenes and its involvement in anaerobic metabolism and H2 production. Biotechnology Letters, 31, 1525–1530.

    Article  CAS  Google Scholar 

  16. Lu, Y., Zhao, H. X., Zhang, C., Lai, Q. H., Wu, X., & Xing, X. H. (2010). Alteration of hydrogen metabolism of ldh-deleted Enterobacter aerogenes by overexpression of NAD(+)-dependent formate dehydrogenase. Applied Microbiology and Biotechnology, 86, 255–262.

    Article  CAS  Google Scholar 

  17. Riebel, B. R., Gibbs, P. R., Wellborn, W. B., & Bommarius, A. S. (2003). Cofactor regeneration of both NAD(+) from NADH and NADP(+) from NADPH: NADH oxidase from Lactobacillus sanfranciscensis. Advanced Synthesis and Catalysis, 345, 707–712.

    Article  CAS  Google Scholar 

  18. Sakka, K., Kawase, M., Baba, D., Morimoto, K., Karita, S., Kimura, T., et al. (2003). Electrotransformation of Clostridium paraputrificum M-21 with some plasmids. Journal of Bioscience and Bioengineering, 96, 304–306.

    CAS  Google Scholar 

  19. Kurokawa, T., & Tanisho, S. (2005). Effects of formate on fermentative hydrogen production by Enterobacter aerogenes. Marine Biotechnology, 7, 112–118.

    Article  CAS  Google Scholar 

  20. Zhang, C., Ma, K., & Xing, X. H. (2009). Regulation of hydrogen production of Enterobacter aerogenes by external NADH and NAD+. International Journal of Hydrogen Energy, 34, 1226–1232.

    Article  CAS  Google Scholar 

  21. Zhao, H. X., Ma, K., Lu, Y., Zhang, C., Wang, L. Y., & Xing, X. H. (2009). Cloning and knockout of formate hydrogen lyase and H2-uptake hydrogenase genes in Enterobacter aerogenes for enhanced hydrogen production. International Journal of Hydrogen Energy, 34, 186–194.

    Article  Google Scholar 

  22. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  23. Sawers, R. G., Ballantine, S. P., & Boxer, D. H. (1985). Differential expression of hydrogenase isoenzymes in Escherichia coli K-12: evidence for a third isoenzyme. Journal of Bacteriology, 164, 1324–1331.

    CAS  Google Scholar 

  24. Riondet, C., Cachon, R., Waché, Y., Alcaraz, G., & Diviès, C. (2000). Extracellular oxidoreduction potential modifies carbon and electron flow in Escherichia coli. Journal of Bacteriology, 182, 620–626.

    Article  CAS  Google Scholar 

  25. Berríos-Rivera, S. J., Bennett, G. N., & San, K. Y. (2002). Metabolic engineering of Escherichia coli: increase of NADH availability by overexpressing an NAD(+)-dependent formate dehydrogenase. Metabolic Engineering, 4, 217–229.

    Article  Google Scholar 

  26. Smits, T. H. M., Seeger, M. A., Witholt, B., & van Beilen, J. B. (2001). New alkane-responsive expression vectors for Escherichia coli and Pseudomonas. Plasmid, 46, 16–24.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank Prof. B. Witholt of ETH of Switzerland for kindly donating the plasmid pCom10, and Prof. K. Ohmiya of Mie University of Japan for gifting with C. paraputrificum. This work was supported by the National Basic Research Program of China (973 Plan) (grant no. 2009CB724702 and 2011CB707404) and National Natural Science Foundation of China (no. 20806046 and 20836004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-Hui Xing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, Y., Zhang, C., Zhao, H. et al. Improvement of Hydrogen Productivity by Introduction of NADH Regeneration Pathway in Clostridium paraputrificum . Appl Biochem Biotechnol 167, 732–742 (2012). https://doi.org/10.1007/s12010-012-9703-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9703-y

Keywords

Navigation