Skip to main content
Log in

Graphene-Based Waveguides: Novel Method for Detecting Biological Activity

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

We demonstrate the fabrication of a biosensor based on graphene coupled with polydimethylsiloxane (PDMS) waveguide. Biosensors work on the principle of local evanescent graphene-coupled wave sensor. It is observed that the evanescent field shifts in the presence of chemical or biological species as evanescent waves are extremely sensitive to a change in refractive index. This method helps to monitor the target analyte by attaching the selective receptor molecules to the surface of the PDMS optical waveguide resulting in its optical intensity distribution shift. We monitor the electrical properties of graphene in the dark and under illumination of PDMS waveguide. The changes in photocurrent through the graphene film were monitored for blue, green, and red light. We observed that the fabricated graphene-coupled PDMS optical waveguide sensor is sensitive to visible light for the used bioanalytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Turner, A. P. F. (2000). Science, 290, 1315–1317.

    Article  CAS  Google Scholar 

  2. Bartlett, P. N., Tebbutt, P., & Whitaker, R. C. (1991). Progress in Reaction Kinetics, 16, 55.

    CAS  Google Scholar 

  3. Ianniello, R. M., Lindsay, T. J., & Yacynych, A. M. (1980). Analytical Chemistry, 1982, 54.

    Google Scholar 

  4. Ghindilis, A. L., & Kurochkin, I. N. (1994). Biosensors and Bioelectronics, 9, 353.

    Article  CAS  Google Scholar 

  5. Lion-Dagan, M., Ben-Dov, I., & Willner, I. (1997). Colloids and Surfaces B, 8, 251.

    Article  CAS  Google Scholar 

  6. Ben-Dov, I., Willner, I., & Zisman, E. (1997). Analytical Chemistry, 69, 3506.

    Article  CAS  Google Scholar 

  7. Bardea, A., Dagan, A., Ben-Dov, I., Amit, B., & Willner,I. (1998). Chemical Communications, 839.

  8. O’Sullivan, C. K., Vaughan, R., & Guilbault, G. G. (1999). Analytical Letters, 32, 2353.

    Article  Google Scholar 

  9. Kazanskaya, N., Kukhtin, A., Manenkova, M., Reshetilov, A. N., Yarysheva, L., Arzhakova, O., et al. (1996). Biosensors and Bioelectronics, 11, 253.

    Article  CAS  Google Scholar 

  10. Zayats, M., Kharitonov, A. B., Katz, E., Bückmann, A. F., & Willner, I. (2000). Biosensors and Bioelectronics, 15, 671.

    Article  CAS  Google Scholar 

  11. Pardo-Yissar, V., Katz, E., Wasserman, J., & Willner, I. (2003). Journal of the American Chemical Society, 125, 622.

    Article  CAS  Google Scholar 

  12. Amador, S. M., Pachence, J. M., Fischetti, R., McCauley, J. P., Jr., Smith, A. B., & Blasic, J. K. (1993). Langmuir, 9, 812.

    Article  CAS  Google Scholar 

  13. Hobara, D., Niki, K., Zhou, C., Chumanov, G., & Cotton, T. M. (1994). Colloids and Surfaces A, 93, 241.

    Article  CAS  Google Scholar 

  14. Liedberg, B., Nylander, C., & Lundström, I. (1995). Biosensors and Bioelectronics, 10, i.

  15. Jordan, C. E., & Corn, R. M. (1997). Analytical Chemistry, 69, 1449.

    Article  CAS  Google Scholar 

  16. Raitman, O. A., Katz, E., Bückmann, A. F., & Willner, I. (2002). Journal of the American Chemical Society, 124, 6487.

    Article  CAS  Google Scholar 

  17. Raitman, O. A., Patolsky, F., Katz, E., & Willner, I. (1936). Chemical Communications, 2002.

  18. Mak, K. F., et al. (2008). Physical Review Letters, 101, 196405.

    Article  Google Scholar 

  19. Xia, F., Mueller, T., & Lin, Y. (2009). Nature Nanotechnology, 4, 839–843.

    Article  CAS  Google Scholar 

  20. Rogalski, A., Antoszewski, J., & Faraone, L. (2009). Journal of Applied Physics, 105, 091101.

    Article  Google Scholar 

  21. Guo, S.-R., Lin, J., Penchev, M., Yengel, E., Ghazinejad, M., Ozkan, C. S., et al. (2011). Journal of Nanoscience and Nanotechnology, 11(6), 5258–5263.

    Article  CAS  Google Scholar 

  22. Lee, Y., Bae, S., Jang, H., Jang, S., Zhu, S. E., Sim, S. H., et al. (2010). Nano Letters, 10, 490.

    Article  CAS  Google Scholar 

  23. Seeman, N. C. (1990). Journal of Biomolecular Structure and Dynamics, 8, 573.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the GRRC program of Gyeonggi province [S-2011-1039-007-1, Development of integrated sensor Technology (2009-0083540)] and Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology (2009-0083540).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Taesung Kim or Suresh Gosavi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J., Kasture, M., Hwang, T. et al. Graphene-Based Waveguides: Novel Method for Detecting Biological Activity. Appl Biochem Biotechnol 167, 1069–1075 (2012). https://doi.org/10.1007/s12010-012-9693-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9693-9

Keywords

Navigation