Skip to main content
Log in

Effect of Extruder Parameters and Moisture Content of Switchgrass, Prairie Cord Grass on Sugar Recovery from Enzymatic Hydrolysis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Research on biomass pretreatment to enhance enzymatic digestibility has been done for more than decades, but a viable continuous pretreatment method needs to be developed. Extrusion has the potential to be a viable continuous pretreatment method. This study investigated the effect of compression ratio (2:1 and 3:1), screw speed (50, 100, and 150 rpm), and barrel temperature (50, 100, and 150 °C) on the sugar recovery from switchgrass (SG) and prairie cord grass (PCG) over a range of moisture contents (15, 25, 35, and 45% wb).The pretreated samples were subjected to enzymatic hydrolysis for sugar recovery measurement. Statistical analyses revealed that a 3:1 screw compression ratio (compared to 2:1) increased glucose recovery by 12% and 8% and combined sugar recovery by 37% and 40% for SG and PCG, respectively. For SG, the highest sugar recovery (45.2%) was obtained at the lowest screw speed (50 rpm) and the highest temperature (150 °C) with moisture content of 15%. The highest glucose, xylose, and combined sugar recovery of 61.4%, 84.3%, and 65.8% were recorded for PCG extruded at a screw speed of 50 rpm and a temperature of 50 °C with a moisture content of 25%. Glycerol and acetic acid were byproducts found in low concentration (0.02–0.18 g/L) for both biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Demirbas, A. (2009). Emission characteristics of gasohol and diesohol. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 31(13), 1099–1104.

    Article  CAS  Google Scholar 

  2. Mosier, N., Wyman, C. E., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., et al. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96(6), 673–686.

    Article  CAS  Google Scholar 

  3. Hsu, T.-A. (1996). Pretreatment of biomass. In C. E. Wyman (Ed.), Handbook on bioethanol production and utilization. Applied Energy Technology Series. Washington: Taylor & Francis. Chapter 10.

    Google Scholar 

  4. Wyman, C. E. (1999). Biomass ethanol: technical progress, opportunities, and commercial challenges. Annual Review Energy Environment, 24, 189–226.

    Article  Google Scholar 

  5. Ooshima, H., Burns, D. S., & Converse, A. O. (1990). Adsorption of cellulase from Trichoderma reesei on cellulose and lignaceous residue in wood pretreated by dilute sulfuric acid with explosive decompression. Biotechnology and Bioengineering, 36, 446–452.

    Article  CAS  Google Scholar 

  6. Holtzapple, M. T., Lundeen, J. E., Sturgis, R., Lewis, J. E., & Dale, B. E. (1992). Pretreatment of lignocellulosic municipal solid-waste by ammonia fiber explosion (AFEX). Applied Biochemistry and Biotechnology, 34–35(1), 5–21.

    Article  Google Scholar 

  7. Zhan, X., Wang, D., Bean, S. R., Mo, X., Sun, X. S., & Boyle, D. (2006). Ethanol production from supercritical fluid extrusion cooked sorghum. Industrial Crops and Products, 23(3), 304–310.

    Article  CAS  Google Scholar 

  8. Lee, S. H., Teramoto, Y., & Endo, T. (2009). Enzymatic saccharification of woody biomass micro/nanofibrillated by continuous extrusion process I—Effect of additives with cellulose affinity. Bioresource Technology, 100(1), 275–279.

    Article  CAS  Google Scholar 

  9. Hsieh, H. L., & Quirk, R. P. (1996). Anionic polymerization: Principles and practical applications. CRC Press, ISBN 0824795237, P 578

  10. Harper, J. M. (1980). Extrusion of foods, Vol. I. Boca Raton: CRC Press, Inc.

    Google Scholar 

  11. Dale, B. E., Weaver, J., & Byers, F. M. (1999). Extrusion processing for ammonia fiber explosion (AFEX). Applied Biochemistry and Biotechnology, 77–79, 35–45.

    Article  Google Scholar 

  12. de Vrije, T., de Haas, G. G., Tan, G. B., Keijsers, E. R. P., & Claassen, P. A. M. (2002). Pretreatment of miscanthus for hydrogen production by Thermotoga elfii. International Journal of Hydrogen Energy, 27(11–12), 1381–1390.

    Google Scholar 

  13. Karunanithy, C., Muthukumarappan, K., & Julson, J. L. (2008). Influence of high shear bioreactor parameters on carbohydrate release from different biomasses. ASABE Paper No. 084109. St. Joseph, Mich.: ASABE.

  14. McLaughlin, S. B., & Kszos, L. A. (2005). Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass and Bioenergy, 28(6), 515–535.

    Article  Google Scholar 

  15. Missaoui, A., Fasoula, V., & Bouton, J. (2005). The effect of low plant density on response to selection for biomass production in switchgrass. Euphytica, 142(1–2), 1–12.

    Article  Google Scholar 

  16. Chevanan, N., Womac, A. R., Bitra, V. S. P., Igathinathane, C., Yang, Y. T., Miu, P. I., et al. (2010). Bulk density and compaction behavior of knife mill chopped switchgrass, wheat straw, and corn stover. Bioresource Technology, 101(1), 207–214.

    Article  CAS  Google Scholar 

  17. Boe, A., & Lee, D. K. (2007). Genetic variation for biomass production in prairie cord grass and switchgrass. Crop Science, 47, 929–934.

    Article  Google Scholar 

  18. Sluiter, A., Hames, B., Hyman, D., Payne, C., Ruiz, R., Scarlata, C., et al. (2008). Determination of total solids in biomass and total dissolved solids in liquid process samples. NREL/TP-510-42621. National Renewable Energy laboratory, Golden, CO.

  19. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., et al. (2008). Determination of structural carbohydrates and lignin in biomass. NREL/TP-510-42618. National Renewable Energy laboratory, Golden, CO.

  20. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2008). Determination of ash in biomass. NREL/TP-510-4622. National Renewabe Energy laboratory, Golden, CO.

  21. Selig, M., Weiss, N., & Ji, Y. (2008). Enzymatic saccharification of lignocellulosic biomass. NREL/TP-510-42629. National Renewable Energy laboratory, Golden, CO.

  22. Karunanithy, C., & Muthukumarappan, K. (2009). Effect of extruder screw speed, temperature, and enzyme levels on sugar recovery from different biomasses. Biomass and Bioenergy.

  23. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2006). Determination of sugars, byproducts, and degradation products in liquid fraction process samples. NREL/TP-510-42623. National Renewable Energy laboratory, Golden, CO.

  24. Kurakake, M., Kisaka, W., Ouchi, K., & Komaki, T. (2001). Pretreatment with ammonia water for enzymatic hydrolysis of corn husk, bagasse, and switchgrass. Applied Biochemistry and Biotechnology, 90(3), 251–259.

    Article  CAS  Google Scholar 

  25. Suryawati, L., Wilkins, M. R., Bellmer, D. D., Huhnke, R. L., Maness, N. O., & Banat, I. M. (2008). Simultaneous saccharification and fermentation of kanlow switchgrass pretreated by hydrothermolysis using kluyveromyces marxianus IMB4. Biotechnology and Bioengineering, 101(5), 894–902.

    Article  CAS  Google Scholar 

  26. Hu, Z., & Wen, Z. (2008). Enhancing enzymatic digestibility of switchgrass by microwave-assisted alkali pretreatment. Biochemical Engineering Journal, 38(3), 369–378.

    Article  CAS  Google Scholar 

  27. Hu, Z., Wang, Y., & Wen, Z. (2008). Alkali (NaOH) pretreatment of switchgrass by radio frequency-based dielectric heating. Applied Biochemistry and Biotechnology, 148(1–3), 71–81.

    Article  CAS  Google Scholar 

  28. DOE (U.S. Department of Energy). (2006). Biomass feedstock composition and property database. Department of Energy, Biomass Program. http://www.eere.energy.gov/biomass/progs/search1.cgi.

  29. Alizadeh, H., Teymouri, F., Gilbert, T. I., & Dale, B. E. (2005). Pretreatment of switchgrass by ammonia fiber explosion (AFEX). Applied Biochemistry and Biotechnology, 124(1–3), 1133–1142.

    Article  Google Scholar 

  30. Dale, B. E., Leong, C. K., Pham, T. K., Esquivel, V. M., Rios, I., & Latimer, V. M. (1996). Hydrolysis of lignocellulosics at low enzyme levels: Application of the AFEX process. Bioresource Technology, 56(1), 111–116.

    Article  CAS  Google Scholar 

  31. Blechschmidt, J., Engert, P., & Stephan, M. (2004). The glass transition of wood from the viewpoint of mechanical pulping. Wood Science and Technology, 20(3), 263–272.

    Google Scholar 

  32. Yeh, A.-I., & Jaw, Y.-M. (1998). Modeling residence time distributions for single screw extrusion process. Journal of Food Engineering, 35, 211–232.

    Article  Google Scholar 

  33. Chen, F. L., Wei, Y. M., Zhang, B., & Ojokoh, A. O. (2010). System parameters and product properties response of soybean protein extruded at wide moisture range. Journal of Food Engineering, 96, 208–213.

    Article  CAS  Google Scholar 

  34. Mani, S., Tabil, L. G., & Sokhansanj, S. (2006). Specific energy requirement for compacting corn stover. Bioresource Technology, 97, 1420–1426.

    Article  CAS  Google Scholar 

  35. Chung, Y.-C., Bakalinsky, A., & Penner, M. H. (2005). Enzymatic saccharification and fermentation of xylose-optimized dilute acid-treated lignocellulosics. Applied Biochemistry and Biotechnology, 124(1–3), 947–961.

    Article  Google Scholar 

  36. Dien, B. S., Jung, H. G., Vogel, K. P., Casler, M. D., Lamb, J. F. S., Iten, L., et al. (2006). Chemical composition and response to dilute-acid pretreatment and enzymatic saccharification of alfalfa, reed canarygrass, and switchgrass. Biomass and Bioenergy, 30(10), 880–891.

    Article  CAS  Google Scholar 

  37. Muthukumarappan, K., & Julson, J. L. (2007). Pretreatment of biomass using a novel extrusion process.15th European Biomass Conference & Exhibition from Research to Market Development, Berlin, Germany, 7–11 May 2007.

  38. Keshwani, D. R., & Cheng, J. J. (2009). Microwave-based alkali pretreatment of switchgrass and coastal bermudagrass for bioethanol production. Biotechnology Progress, (In press, doi:10.1002/btpr.371).

  39. Xu, J., Cheng, J. J., Sharma-Shivappa, R. R., & Burns, J. C. (2010). Lime pretreatment of switchgrass at mild temperatures for ethanol production. Bioresource Technology, 101, 2900–2903.

    Article  CAS  Google Scholar 

  40. Tarkow, H., & Feist, W. C. (1969). A mechanism for improving the digestibility of lignocellulosic materials with dilute alkali and liquid NH3. Advance Chemistry Series 95. American Chemical Society, Washington, DC, pp. 197–218.

  41. Kelly, A. L., Brown, E. C., & Coates, P. D. (2006). The effect of screw geometry on melt temperature profile in single screw extrusion. Polymer Engineering and Science, 46(12), 1706–1714.

    Article  CAS  Google Scholar 

  42. Harmann, D. V., & Harper, J. M. (1973). Effect of extruder geometry on torque and flow. Transactions of the ASAE, 16(6), 1175–1178.

    Google Scholar 

  43. Isci, A., Himmelsbach, J. N., Pometto, A. L., Raman, D. R., & Anex, R. P. (2008). Aqueous ammonia soaking of switchgrass followed by simultaneous saccharification and fermentation. Applied Biochemistry and Biotechnology, 144(1), 69–77.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by funding from the Agricultural Experiment Station and North Central Sun Grant Center at South Dakota State University through a grant provided by the US Department of Transportation, Office of the Secretary, Grant No. DTOS59-07-G-00054. Also, enzymes supplied by Novozymes, Inc for conducting this study were greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chinnadurai Karunanithy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karunanithy, C., Muthukumarappan, K. Effect of Extruder Parameters and Moisture Content of Switchgrass, Prairie Cord Grass on Sugar Recovery from Enzymatic Hydrolysis. Appl Biochem Biotechnol 162, 1785–1803 (2010). https://doi.org/10.1007/s12010-010-8959-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-8959-3

Keywords

Navigation