Skip to main content
Log in

Rheology of Dilute Acid Hydrolyzed Corn Stover at High Solids Concentration

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The rheological properties of acid hydrolyzed corn stover at high solids concentration (20–35 wt.%) were investigated using torque rheometry. These materials are yield stress fluids whose rheological properties can be well represented by the Bingham model. Yield stresses increase with increasing solids concentration and decrease with increasing hydrolysis reaction temperature, acid concentration, and rheometer temperature. Plastic viscosities increase with increasing solids concentration and tend to decrease with increasing reaction temperature and acid concentration. The solids concentration dependence of the yield stress is consistent with that reported for other fibrous systems. The changes in yield stress with reaction conditions are consistent with observed changes in particle size. This study illustrates that torque rheometry can be used effectively to measure rheological properties of concentrated biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Aden, A., Ruth, M., Ibsen, K., Jechura, J., Neeves, K., Sheehan, J., et al. (2002). NREL Technical Report TR-510-32438.

  2. Schell, D. J., Farmer, J., Newman, M., & McMillan, J. D. (2003). Applied Biochemistry and Biotechnology, 105, 69–85. doi:10.1385/ABAB:105:1-3:69.

    Article  Google Scholar 

  3. Wooley, R., Ruth, M., Sheehan, J., Ibsen, K., Majdeski, H., & Galvez, A. (1999). NREL Technical Report TP-580-26157.

  4. Sheehan, J., Aden, A., Paustian, K., Killian, K., Brenner, J., Walsh, M., et al. (2004). Journal of Industrial Ecology, 7, 117–146. doi:10.1162/108819803323059433.

    Article  Google Scholar 

  5. Wyman, C. E. (2007). Trends in Biotechnology, 25, 153–157. doi:10.1016/j.tibtech.2007.02.009.

    Article  CAS  Google Scholar 

  6. Lynd, L. R. (1996). Annual Review of Energy and the Environment, 21, 403–465. doi:10.1146/annurev.energy.21.1.403.

    Article  Google Scholar 

  7. Wingren, A., Galbe, M., & Zacchi, G. (2003). Biotechnology Progress, 19, 1109–1117. doi:10.1021/bp0340180.

    Article  CAS  Google Scholar 

  8. Jørgensen, H., Vibe-Pedersen, J., Larsen, J., & Felby, C. (2007). Biotechnology and Bioengineering, 96, 862–870. doi:10.1002/bit.21115.

    Article  Google Scholar 

  9. Rosgaard, L., Andric, P., Dam-Johansen, K., Pedersen, S., & Meyer, A. S. (2007). Applied Biochemistry and Biotechnology, 143, 27–40. doi:10.1007/s12010-007-0028-1.

    Article  CAS  Google Scholar 

  10. Um, B., & Hanley, T. R. (2008). Applied Biochemistry and Biotechnology, 145, 29–38. doi:10.1007/s12010-007-8105-z.

    Article  CAS  Google Scholar 

  11. Lu, Y., Wang, Y., Xu, G., Chu, J., Zhuang, Y., & Zhang, S. (2008). Applied Biochemistry and Biotechnology . doi:10.1007/s12010-008-8306-0.

  12. Pimenova, N., & Hanley, T. (2003). Applied Biochemistry and Biotechnology, 106, 383–392. doi:10.1385/ABAB:106:1-3:383.

    Article  Google Scholar 

  13. Pimenova, N., & Hanley, T. (2004). Applied Biochemistry and Biotechnology, 114, 347–360. doi:10.1385/ABAB:114:1-3:347.

    Article  Google Scholar 

  14. Viamajala, S., McMillan, J. D., Schell, D. J., & Elander, R. T. (2009). Bioresource Technology, 100, 925–934. doi:10.1016/j.biortech.2008.06.070.

    Article  CAS  Google Scholar 

  15. Nguyen, Q. D., Akroyd, T., De Kee, D. C., & Zhu, L. (2006). Korea–Australia Rheology Journal, 18, 15–24.

    Google Scholar 

  16. Scott, C. T., & Zauscher, S. (1997). Tappi Environmental Conference Proceedings, pp. 739–743. Atlanta: Tappi Press.

    Google Scholar 

  17. Zauscher, S., Scott, C. T., Willett, J. L., & Klingenberg, D. J. (2000). Tappi Journal, 83, 1–10.

    Google Scholar 

  18. Zauscher, S. (2000). PhD Thesis, University of Wisconsin, Madison, WI, USA.

  19. Ehrhardt, M. E. (2008). M.S. Thesis, University of Wisconsin, Madison, WI.

  20. Hsu, D. (1995). NREL Laboratory Analytical Procedure LAP-007.

  21. Vroom, K. (1957). Pulp & Paper Magazine of Canada, 58, 238–231.

    Google Scholar 

  22. Biermann, C. (1996). Handbook of pulping and papermaking (2nd ed.). San Diego: Academic.

    Google Scholar 

  23. Maloney, M., Chapman, T., & Baker, A. (1985). Biotechnology and Bioengineering, 27, 355–361. doi:10.1002/bit.260270321.

    Article  CAS  Google Scholar 

  24. Chum, H., Johnson, D., Black, S., & Overend, R. (1990). Applied Biochemistry and Biotechnology, 24/25, 1–14. doi:10.1007/BF02920229.

    Article  Google Scholar 

  25. Saracoglu, N., Mutlu, S., Dilmac, G., & Cavusoglu, H. (1998). Bioresource Technology, 65, 29–33. doi:10.1016/S0960-8524(98)00032-7.

    Article  Google Scholar 

  26. Kim, S., Yum, D., & Park, S. (2000). Bioresource Technology, 72, 289–294. doi:10.1016/S0960-8524(99)00081-4.

    Article  CAS  Google Scholar 

  27. Aguilar, R., Ramirez, J., Garrote, G., & Vazquez, M. (2002). Journal of Food Engineering, 55, 309–318. doi:10.1016/S0260-8774(02)00106-1.

    Article  Google Scholar 

  28. Goodrich, J. E., & Porter, R. S. (1967). Polymer Engineering and Science, 7, 45–51. doi:10.1002/pen.760070112.

    Article  CAS  Google Scholar 

  29. Bousmina, M., Ait-Kadi, A., & Faisant, J. B. (1999). Journal of Rheology (New York, N.Y.), 43, 415–433. doi:10.1122/1.551044.

    CAS  Google Scholar 

  30. Bohlin VOR Rheometer Users Manual, Malvern Instruments, Westborough, MA.

  31. Swerin, A., Powell, R., & Odberg, L. (1992). Nordic Pulp & Paper Research Journal, 7, 126–143. doi:10.3183/NPPRJ-1992-07-03-p126-132.

    Article  CAS  Google Scholar 

  32. Bennington, C., Kerekes, R., & Grace, J. (1990). Canadian Journal of Chemical Engineering, 68, 748–757.

    Article  CAS  Google Scholar 

  33. Kerekes, R. (2006). Nordic Pulp & Paper Research Journal, 21, 598–612. doi:10.3183/NPPRJ-2006-21-05-p598-612.

    Article  CAS  Google Scholar 

  34. Dalpke, B., & Kerekes, R. (2005). Journal of Pulp and Paper Science, 31, 39–43.

    CAS  Google Scholar 

  35. Schmid, C., Switzer, L., & Klingenberg, D. J. (2000). Journal of Rheology (New York, N.Y.), 44, 781–809. doi:10.1122/1.551116.

    CAS  Google Scholar 

  36. Switzer, L. H., & Klingenberg, D. J. (2003). Journal of Rheology (New York, N.Y.), 47, 759–778. doi:10.1122/1.1566034.

    CAS  Google Scholar 

  37. Wahren, D. (1964). Svenska Papperstidn, 67, 378–381.

    Google Scholar 

Download references

Acknowledgments

This project was supported in part by the National Research Initiative of the USDA Cooperative State Research, Education and Extension Service, grant number 2006-35504-17401.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. J. Klingenberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ehrhardt, M.R., Monz, T.O., Root, T.W. et al. Rheology of Dilute Acid Hydrolyzed Corn Stover at High Solids Concentration. Appl Biochem Biotechnol 160, 1102–1115 (2010). https://doi.org/10.1007/s12010-009-8606-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8606-z

Keywords

Navigation