Skip to main content
Log in

Phytodegradation Potential of Erythrina crista-galli L., Fabaceae, in Petroleum-Contaminated Soil

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This work aimed at investigating both the tolerance and the phytodegradation potential of Erythrina crista-galli L. in petroleum-contaminated soil. It consisted in analyzing E. crista-galli germination, surviving, growth, and development when cultivated at different contaminant concentrations and pollutant degradation rates. This specimen was selected because it presented a special behavior among others also exposed to petroleum in an accident that occurred in the Araucaria region (south of Brazil), resulting in a four-million-liter oil spill. The experiment was carried out in a greenhouse containing non-contaminated soil (NCS), vegetated contaminated soil (VCS), and non-vegetated contaminated soil (NVCS) at the following petroleum concentrations: 25 g kg−1 (VCS-25), 50 g kg−1 (VCS-50), and 75 g kg−1 (VCS-75). After 60 days, the soil samples were analyzed by gas chromatography. Germination was more and more evident as higher petroleum concentrations were observed. The surviving rates of groups NCS, VCS-25, VCS-50, and VCS-75 were 64%, 70%, 61%, and 96%, respectively. The VCS group growth was reduced when compared to the control group (NCS). The individuals exposed to petroleum pollution presented differences in the anatomic structure of their roots when compared to the NCS group. It was observed that the petroleum degradation rate was higher for VCS group than for NVCS. E. crista-galli is potentially recommended for petroleum-contaminated soils because of its positive association in the presence of contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14 Fig. 15 Fig. 16 Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Cunningham, S. D., & Ow, D. W. (1996). Plant Physiology, 110, 715–719.

    CAS  Google Scholar 

  2. Maranho, L. T, Azevedo, J. A. M., Preusseler, K. H., & Filho, M. A. S. (2006). Environmental biotechnology and engineering. Proceedings of the Second International Meeting on Environmental Biotechnology End Engineering (2IMEBE). México City. México.

  3. Ferrera-Cerrato, R., Lópes-Ortiz, C., Alarcón, A., Delgadillo-Mártinez, J., Trejo-Aguilar, D., Mendoza-López, R., et al. (2006). Environmental biotechnology and engineering. Proceedings of the Second International Meeting on Environmental Biotechnology End Engineering (2IMEBE). México City. México.

  4. Merkl, N., Schultze-Kraft, R., & Infante, C. (2005). Environmental Pollution, 138, 86–91.

    Article  CAS  Google Scholar 

  5. Cunningham, S. D., Anderson, T. A., & Schwab, A. P. (1996). Advances in Agronomy, 56, 55–114.

    Article  CAS  Google Scholar 

  6. Pires, F. R., Souza, C. M., Silva, A. A., Procópio, S. O., & Ferreira, L. R. (2003). Revista Planta Daninha, 21(2), 335–341.

    Google Scholar 

  7. Perkovich, B. S., Anderson, T. A., & Coats, J. R. (1996). Pesticide Science, 46, 391–396.

    Article  CAS  Google Scholar 

  8. Michel, J., Henry, C. B. Jr., & Thumm, S. (2002). Spill Science & Technology Bulletin, 7, 155–161.

    Article  Google Scholar 

  9. Sangabriel, W., Ferrera-Cerrato, R., Trejo-Aguilar, D., Mendonza-López, M. R., Cruz-Sánches, J. S., López-Ortiz, C., et al. (2006). Internacional de Contaminación Ambiental, 22, 63–73.

    CAS  Google Scholar 

  10. Pezeshki, S. R., Hester, M. W., Lin, Q., & Nyman, J. A. (2000). Environmental Pollution, 108, 129–139.

    Article  CAS  Google Scholar 

  11. Tischer, R., & Hübner, T. (2002). International Journal of Phytoremediation, 4, 197–203.

    Article  Google Scholar 

  12. Aprill, W., & Sims, R. C. (1990). Chemosphere, 20, 253–265.

    Article  CAS  Google Scholar 

  13. Qiu, X., Leland, T. W., Shah, S. I., Sorensen, D. L., & Kendall, E. W. (1997). Phytoremediation of Soil and Water Contaminants, 664, 186–199.

    CAS  Google Scholar 

  14. Gunther, T., Dornberger, U., & Fritsche, W. (1996). Chemosphere, 3, 3, 203–215.

    Article  CAS  Google Scholar 

  15. Reilley, K. A., Banks, M. K., & Schwab, A. P. (1996). Journal of Environmental Quality, 25, 212–219.

    CAS  Google Scholar 

  16. Brandt, R., Merk, N., Schultze-Kraft, R., Infante, C., & Broll, G. (2006). International Journal of Phytoremediation, 8, 273–284.

    Article  CAS  Google Scholar 

  17. Hernández-Acosta, E., Ferrera-Cerrato, R., & Rodríguez, R. V. (2003). Terra, 21, 81–89.

    Google Scholar 

  18. Ministério da Agricultura. (1992). Brasil. Regras para análise de sementes.

  19. Johansen, D. A. (1940). Plant microtechnique. New York: McGraw Hill Book.

    Google Scholar 

  20. Berlyn, G. P., & Miksche, J. P. (1976). Botanical microtechnique and cytochemistry. Iowa: Iowa University.

    Google Scholar 

  21. Felder, N., & O’brien, T. P. (1968). American Journal of Botany, 55, 123–142.

    Article  Google Scholar 

  22. Sakai, W. S. (1973). Stain Technology, 48, 247–249.

    CAS  Google Scholar 

  23. Schwab, A. P., Su, J., Wetzel, S., Pekerak, S., & Banks, M. K. (1999). Environmental Science & Technology, 33, 1940–1945.

    Article  CAS  Google Scholar 

  24. Kuhn, W., Ganbino, R., Al-Awadhi, N., Balba, M. T., & Dragun, J. (1998). Journal of Soil Contamination, 7, 801–806.

    Article  Google Scholar 

  25. Rivera-Cruz, M. C., Trujillo-Nárcia, A., Cruz, M. A. M., & Chávez, E. M. (2005). Interciencia, 30, 326–331.

    Google Scholar 

  26. Maranho, L. T., Galvão, F., Preussler, K. H., Muniz, G. I. B., & Kuniyoshi, Y. S. (2006). Acta Botanica Brasilica, 20, 615–624.

    Google Scholar 

  27. Udo, E. J., & Feyemi, A. A. A. (2001). Journal of Environmental Quality, 4, 537–540.

    Google Scholar 

  28. Hou, F. S. L., Leung, D. W. M., Milke, M. W., & Macpherson, D. J. (1999). Environmental Technology, 20, 413–418.

    Article  CAS  Google Scholar 

  29. Siddiqui, S., & Adams, W. A. (2002). Environmental Toxicology, 17, 49–62.

    Article  CAS  Google Scholar 

  30. Salanitro, J., Dorn, P., Hueseman, M., Moore, K., Rhodes, I., Rice, L., et al. (1997). Environmental Science & Technology, 31, 1769–1776.

    Article  CAS  Google Scholar 

  31. Rivera-Cruz, M. C., & Trujillo-Nárcia, A. (2004). Interciencia, 29, 369–376.

    Google Scholar 

  32. Teal, J. M., & Kanwisher, J. W. (1966). Journal of Experimental Botany, 17, 355–361.

    Article  CAS  Google Scholar 

  33. Luxmoore, R. J., Stolzy, L. H., & Letey, J. (1970). Agronomy Journal, 62, 317–322.

    Article  Google Scholar 

  34. Smith, W. H. (1990). In A. A. Lucier & S. H Haines (Eds.), Mechanisms of forest response to acidic deposition (pp. 188–241). New York: Springer.

    Google Scholar 

  35. Merkl, N., Schultze-Kraft, R., & Infante, C. (2005). Water, Air, and Soil Pollution, 165, 195–209.

    Article  CAS  Google Scholar 

  36. Merkl, N., Schultze-Kraft, R., & Infante, C. (2004). Bioremediation Journal, 8, 177–184.

    Article  CAS  Google Scholar 

  37. Schnoor, J. L., Licht, L. A., Mccutcheon, S. C., Wolfe, N. L., & Carreira, L. H. (1995). Environmental Science & Technology, 29, 318–323.

    Article  Google Scholar 

  38. Reilley, K. A., Banks, M. K., & Schwab, A. P. (1996). Journal of Environmental Quality, 25, 212–219.

    CAS  Google Scholar 

  39. Liste, H. H., & Alexander, M. (2000). Chemosphere, 40, 11–14.

    Article  CAS  Google Scholar 

  40. Olson, P. E., Reardon, K. F., & Pilon-Smits, E. A. H. (2003). In S. C. McCutcheon & J. L. Schnoor (Eds.), Phytoremediation: transformation and control of contaminants (pp. 317–354). New York: Wiley.

    Google Scholar 

  41. Spriggs, T., Banks, M. K., & Schwab, P. (2005). Journal of Environmental Quality, 34, 1755–1762.

    Article  CAS  Google Scholar 

  42. Gudin, C., & Syratt, W. J. (1975). Environmental Pollution, 8, 107–112.

    Article  Google Scholar 

  43. Pivetz, B. E. (2001). Phytoremediation of contaminated soil and ground water at hazardous waste sites. EPA Ground water issue (EPA/540/S-01/500).

  44. Trapp, S., & Karlson, U. (2001). Journal of Soils and Sediments, 1, 1–7.

    Article  Google Scholar 

  45. Singh, O. V., & Jain, R. K. (2003). Applied Microbiology and Biotechnology, 63, 128–135.

    Article  CAS  Google Scholar 

  46. Olson, P. E., & Fletcher, J. S. (2000). Environmental Science and Pollution Research International, 7, 195–204.

    Article  CAS  Google Scholar 

  47. Mackey, C. V., & DePuit, E. J. (1985). Reclamation & Revegetation Research, 4, 1–16.

    CAS  Google Scholar 

  48. Rowell, M. J., & Florence, L. Z. (1993). Soil Biology & Biochemistry, 25, 1499–1511.

    Article  Google Scholar 

  49. Baker, J. M. (1979). In R. L. Jeffries & A. J. Davy (Eds.), Ecological processes in coastal environments (pp. 529–542). London: Blackwell Scientific.

    Google Scholar 

  50. Pilon-Smits, E. (2005). Annual Review of Plant Biology, 56, 15–39.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Ricardo Soccol.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Farias, V., Maranho, L.T., de Vasconcelos, E.C. et al. Phytodegradation Potential of Erythrina crista-galli L., Fabaceae, in Petroleum-Contaminated Soil. Appl Biochem Biotechnol 157, 10–22 (2009). https://doi.org/10.1007/s12010-009-8531-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8531-1

Keywords

Navigation