Skip to main content
Log in

Highly Efficient Regioselective Synthesis of 5′-O-lauroyl-5-azacytidine Catalyzed by Candida antarctica Lipase B

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Enzymatic regioselective acylation of 5-azacytidine with vinyl laurate was successfully conducted with an immobilized lipase from Candida antarctica type B (i.e., Novozym 435) for the first time. The acylation of 5-azacytidine took place at its primary hydroxyl group and the desired product 5′-O -lauroyl-5-azacytidine could be prepared with high reaction rate, high conversion, and excellent regioselectivity. The influences of several key variables on the enzymatic acylation were also systematically examined. Pyridine was found to be the best reaction medium. The optimum initial water activity, the molar ratio of vinyl laurate to 5-azacytidine and reaction temperature were 0.07, 30:1, and 50 °C, respectively. Under the optimized conditions described above, the initial reaction rate, the substrate conversion, and the regioselectivity were as high as 0.58 mM/min, 95.5%, and >99%, respectively, after a reaction time of around 5 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kaminskas, E., Farrell, A. T., Wang, Y. C., Sridhara, R., & Pazdur, R. (2005). Oncologist, 10, 176–182.

    Article  CAS  Google Scholar 

  2. Romanová, D., & Novotný, L. (1996). Journal of Chromatography B, 675, 9–15.

    Article  Google Scholar 

  3. Shafiee, M., Griffon, J. F., Gosselin, G., Cambi, A., Vincenzetti, S., Vita, A., et al. (1998). Biochemical Pharmacology, 56, 1237–1242.

    Article  CAS  Google Scholar 

  4. Matín, D., Teijeiro, C., & Piňa, J. J. (1996). Journal of Electroanalytical Chemistry, 407, 189–194.

    Article  Google Scholar 

  5. Beisler, J. A., Abbasi, M. M., Kelley, J. A., & Driscoll, J. S. (1977). Journal of Medicinal Chemistry, 20, 806–812.

    Article  CAS  Google Scholar 

  6. Beisler, J. A. (1978). Journal of Medicinal Chemistry, 21, 204–208.

    Article  CAS  Google Scholar 

  7. Ghosh, M. K., & Mitra, A. K. (1991). Pharmaceutical Research, 8, 771–775.

    Article  CAS  Google Scholar 

  8. Siedlecki, P., Boy, R. G., Comagic, S., Schirrmacher, R., Wiessler, M., Zielenkiewicz, P., et al. (2003). Biochemical and Biophysical Research Communications, 306, 558–563.

    Article  CAS  Google Scholar 

  9. Li, X. F., Zong, M. H., Wu, H., & Lou, W. Y. (2006). Journal of Biotechnology, 124, 552–560.

    Article  CAS  Google Scholar 

  10. Secundo, F., & Carrea, G. (2002). Journal of Molecular Catalysis. B, Enzymatic, 19–20, 93–102.

  11. Ferrero, M., & Gotor, V. (2000). Monatshefte für Chemie, 131, 585–616.

    CAS  Google Scholar 

  12. Morís, F., & Gotor, V. (1993). Journal of Organic Chemistry, 58, 653–660.

    Article  Google Scholar 

  13. Mei, Y., Miller, L., Gao, W., & Gross, R. A. (2003). Biomacromolecules, 4, 70–74.

    Article  CAS  Google Scholar 

  14. Li, X. F., Lou, W. Y., Smith, T. J., Zong, M. H., Wu, H., & Wang, J. F. (2006). Green Chemistry, 8, 538–544.

    Article  CAS  Google Scholar 

  15. Ganske, F., & Bornscheuer, U. T. (2005). Journal of Molecular Catalysis. B, Enzymatic, 36, 40–42.

    Article  CAS  Google Scholar 

  16. Wehtje, E., Kaur, J., Adlercreutz, P., Chand, S., & Mattiasson, B. (1997). Enzyme and Microbial Technology, 21, 502–510.

    Article  CAS  Google Scholar 

  17. Ducret, A., Trani, M., & Lortíe, R. (1998). Enzyme and Microbial Technology, 22, 212–216.

    Article  CAS  Google Scholar 

  18. Han, J. J., & Rhee, J. S. (1998). Enzyme and Microbial Technology, 22, 158–164.

    Article  CAS  Google Scholar 

  19. Ma, L., Persson, M., & Adlercreutz, P. (2002). Enzyme and Microbial Technology, 31, 1024–1029.

    Article  CAS  Google Scholar 

  20. Wang, H., Zong, M. H., Wu, H., & Lou, W. Y. (2007). Journal of Biotechnology, 129, 689–695.

    Article  CAS  Google Scholar 

  21. Therisod, M., & Klibanov, A. M. (1986). Journal of the American Chemical Society, 108, 5638–5640.

    Article  CAS  Google Scholar 

  22. McCabe, R. W., & Taylor, A. (2004). Enzyme and Microbial Technology, 35, 393–398.

    Article  CAS  Google Scholar 

  23. Wang, N., Chen, Z. C., Lu, D. S., & Lin, X. F. (2005). Bioorganic & Medicinal Chemistry Letters, 15, 4064–4067.

    Article  CAS  Google Scholar 

  24. Uppenberg, J., Öhrner, N., Norin, M., Hult, K., Kleywegt, G. J., Patkar, S., et al. (1995). Biochemistry, 34, 16838–16851.

    Article  CAS  Google Scholar 

  25. Fan, H., Kitagawa, M., Raku, T., & Tokiwa, Y. (2004). Biotechnology Letters, 26, 1261–1264.

    Article  CAS  Google Scholar 

  26. Wehtje, E., Costes, D., & Adlercreutz, P. (1997). Journal of Molecular Catalysis. B, Enzymatic, 3, 221–230.

    Article  CAS  Google Scholar 

  27. Halling, P. J. (1994). Enzyme and Microbial Technology, 16, 178–206.

    Article  CAS  Google Scholar 

  28. Bell, G., Halling, P. J., Moore, B. D., Partridge, J., & Rees, D. G. (1995). Trends in Biotechnology, 13, 468–473.

    Article  CAS  Google Scholar 

  29. Klibanov, A. M. (1997). Trends in Biotechnology, 15, 97–101.

    Article  CAS  Google Scholar 

  30. Li, X. F., Zong, M. H., & Yang, R. D. (2006). Journal of Molecular Catalysis. B, Enzymatic, 38, 48–53.

    Article  CAS  Google Scholar 

  31. Degn, P., & Zimmermann, W. (2001). Biotechnology and Bioengineering, 74, 483–491.

    Article  CAS  Google Scholar 

  32. Weber, H. K., Weber, H., & Kazlauskas, R. J. (1999). Tetrahedron: Asymmetry, 10, 2635–2638.

    Article  CAS  Google Scholar 

  33. Morís, F., & Gotor, V. (1993). Tetrahedron, 49, 10089–10098.

    Article  Google Scholar 

  34. Klibanov, A. M. (2001). Nature, 409, 241–246.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We acknowledge the National Natural Science Foundation of China (Grant No. 20676043), Science and Technology Project of Guangdong Province (Grant No. 2006A10602003; 2007B011000005), Science and Technology Project of Guangzhou (Grant No. 2007Z3-E4101), the Natural Science Foundation of Guangdong Province (Grant No. 05006571), the Doctoral Program of Higher Education (Grant No. 20070561080) and the Open Project Program of the State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (Grant No. N-06-06) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min-Hua Zong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, XY., Zong, MH., Lou, WY. et al. Highly Efficient Regioselective Synthesis of 5′-O-lauroyl-5-azacytidine Catalyzed by Candida antarctica Lipase B. Appl Biochem Biotechnol 151, 21–28 (2008). https://doi.org/10.1007/s12010-008-8152-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8152-0

Keywords

Navigation