Skip to main content
Log in

A comparative study on combined compromise solution (CoCoSo)-based optimization of drilling of aluminium metal matrix composites in fuzzy environments

  • Original Article
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

Due to excellent mechanical and metallurgical properties, metal matrix composites (MMCs) are in high demand for numerous engineering applications across multiple industrial sectors. However, presence of reinforcement particles in MMCs adversely affects their machinability leading to increased tool wear and cutting force requirement. To simultaneously achieve better product quality and higher tool life, there is a need to determine the optimal values for various drilling parameters affecting those characteristics. This paper proposes application of the Combined Compromise Solution (CoCoSo) method in five different fuzzy environments for solving the parametric optimization problems of two aluminium MMC (Al-MMC) drilling processes. Fuzzy CoCoSo, intuitionistic fuzzy CoCoSo, Pythagorean fuzzy CoCoSo, neutrosophic fuzzy CoCoSo and hesitant fuzzy CoCoSo are applied to search out the optimal combinations of the input parameters for the considered Al-MMC drilling operations. For the first Al-MMC drilling process, all the five approaches recommend higher helix angle = 40°, moderate spindle speed = 500 rpm and lower feed rate = 0.1 mm/rev as the optimal combination to simultaneously optimize surface roughness, cutting force and drilling temperature. Furthermore, a similar trend is also observed in the results of the second Al-MMC drilling process, where all these methods propose relatively moderate spindle speed = 2000 rpm and lower feed rate = 50 mm/min along with 3% mica reinforcement and a polycrystalline diamond drilling tip to achieve the best drilling performance. Finally, the results are compared with those achieved using the standalone CoCoSo and other fuzzy-based approaches. It is observed that CoCoSo method can effectively determine the optimal parametric combinations and the results are quite consistent throughout all the fuzzy environments under consideration. Furthermore, the fuzzy CoCoSo approaches can effectively deal with the subjectivity in opinions of the decision makers (stakeholders) while assigning relative importance to the responses according to their requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The manuscript has no associated data to deposit.

References

  1. Sharma, A.K., Bhandari, R., Aherwar, A., Rimašauskienė, R., Pinca-Bretotean, C.: A study of advancement in application opportunities of aluminum metal matrix composites. Mater. Today: Proc. 26, 2419–2424 (2020)

    Google Scholar 

  2. Bandhu, D., Thakur, A., Purohit, R., Verma, R.K., Abhishek, K.: Characterization & evaluation of Al7075 MMCs reinforced with ceramic particulates and influence of age hardening on their tensile behavior. J. Mech. Sci. Technol. 32, 3123–3128 (2018)

    Article  Google Scholar 

  3. Mortensen, A., Llorca, J.: Metal matrix composites. Annu. Rev. Mater. Res. 40, 243–270 (2010)

    Article  ADS  CAS  Google Scholar 

  4. Miracle, D.B.: Metal matrix composites: from science to technological significance. Compos. Sci. Technol. 65, 2526–2540 (2005)

    Article  CAS  Google Scholar 

  5. Ramnath, B.V., Elanchezhian, C., Annamalai, R.M., Aravind, S., Atreya, T.S.A., Vignesh, V., Subramanian, C.: Aluminium metal matrix composites: a review. Rev. Adv. Mater. Sci. 38, 55–60 (2014)

    CAS  Google Scholar 

  6. Xavior, M.A., Kumar, J.A.: Machinability of hybrid metal matrix composite: a review. Proc. Eng. 174, 1110–1118 (2017)

    Article  CAS  Google Scholar 

  7. Doomra, V.K., Debnath, K., Singh, I.: Drilling of metal matrix composites: Experimental and finite element analysis. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 229, 886–890 (2015)

    Article  CAS  Google Scholar 

  8. Basavarajappa, S., Chandramohan, G., Davim, J.P.: Some studies on drilling of hybrid metal matrix composites based on Taguchi techniques. J. Mater. Process. Technol. 196, 332–338 (2008)

    Article  CAS  Google Scholar 

  9. Bhardwaj, A.R., Vaidya, A.M., Meshram, A.P.D., D., Bandhu,: Machining behavior investigation of aluminium metal matrix composite reinforced with TiC particulates. Int. J. Interact. Des. Manuf. (2023). https://doi.org/10.1007/s12008-023-01378-6

    Article  Google Scholar 

  10. Haq, A.N., Marimuthu, P., Jeyapaul, R.: Multi response optimization of machining parameters of drilling Al/SiC metal matrix composite using grey relational analysis in the Taguchi method. Int. J. Adv. Manuf. Technol. 37, 250–255 (2008)

    Article  Google Scholar 

  11. Rajmohan, T., Palanikumar, K.: Optimization of machining parameters for multi-performance characteristics in drilling hybrid metal matrix composites. J. Compos. Mater. 46, 869–878 (2012)

    Article  ADS  CAS  Google Scholar 

  12. Singh, H., Kamboj, A., Kumar, S.: Multi response optimization in drilling Al6063/SiC/15% metal matrix composite. Int. J. Mech. Mechatron. Eng. 8, 281–286 (2014)

    Google Scholar 

  13. Shivapragash, B.K., Chandrasekaran, K., Parthasarathy, C., Samuel, M.: Multi response optimizations in drilling using Taguchi and grey relational analysis. Int. J. Mod. Eng. Res. 3, 765–768 (2013)

    Google Scholar 

  14. Rajmohan, T., Palanikumar, K., Prakash, S.: Grey-fuzzy algorithm to optimise machining parameters in drilling of hybrid metal matrix composites. Compos. Part B Eng. 50, 297–308 (2013)

    Article  Google Scholar 

  15. Singh, S., Singh, I., Dvivedi, A.: Multi objective optimization in drilling of Al6063/10% SiC metal matrix composite based on grey relational analysis. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 227, 1767–1776 (2013)

    Article  CAS  Google Scholar 

  16. Babu, K.V., Uthayakumar, M., Jappes, J.W., Rajan, T.P.D.: Optimization of drilling process on Al-SiC composite using grey relational analysis, In: Materials Science and Engineering: Concepts, Methodologies, Tools, and Applications, pp. 392–406, IGI Global (2017)

  17. Prakash, J.U., Rubi, C.S., Rajkumar, C., Juliyana, S.J.: Multi-objective drilling parameter optimization of hybrid metal matrix composites using grey relational analysis. Mater. Today: Proc. 39, 1345–1350 (2021)

    Google Scholar 

  18. Singh, S., Singh, A., Singh, I., Dvivedi, A.: Optimization of process parameters for drilling of metal matrix composites (MMC) using Taguchi analysis. Adv. Mater. Res. 410, 249–252 (2012)

    Article  CAS  Google Scholar 

  19. Juliyana, S.J., Prakash, J.U.: Drilling parameter optimization of metal matrix composites (LM5/ZrO2) using Taguchi technique. Mater. Today: Proc. 33, 3046–3050 (2020)

    Google Scholar 

  20. Prakash, J.U., Rubi, C.S., Palani, S., Juliyana, S.J., Sadhana, A.D.: Optimization of machining parameters in drilling of LM6/B4C/fly ash hybrid composites. Manuf. Rev. 9, 28 (2022)

    CAS  Google Scholar 

  21. Murali Mohan, M., Venugopal Goud, E., Deva Kumar, M.L.S., Kumar, V., Kumar, M., Dinbandhu: Parametric optimization and evaluation of machining performance for aluminium-based hybrid composite using utility-Taguchi approach. In: Recent Advances in Smart Manufacturing and Materials: Select Proceedings of ICEM 2020, pp. 289–300 (2021)

  22. Daniel, S.A.A., Kumar, R., Vijay Ananth, S., Pugazhenthi, R.: Multi-objective optimization of drilling of Al5059–SiC–2%MoS2 composites using NSGA-II. Mater. Today: Proc. 22, 853–857 (2020)

    Google Scholar 

  23. Babu, S.S., Dhanasekaran, C.: Mathematical analysis of process parameters in drilling of various aluminium matrix composites using TOPSIS. Mater. Sci. Eng. 1126, 012023 (2021)

    CAS  Google Scholar 

  24. Reddy, P.L., Kumar, A.S., Mahesh, P., Babu, J.A., Singaravel, B.: Drilling of Al-MMC and its process parameters optimization, In: AIP Conference Proceedings, vol. 2648, pp. 040013 (2022)

  25. Yazdani, M., Wen, Z., Liao, H., Banaitis, A., Turskis, Z.: A grey combined compromise solution (CoCoSo-G) method for supplier selection in construction management. J. Civ. Eng. 25, 858–874 (2019)

    Google Scholar 

  26. Ecer, F., Pamucar, D.: Sustainable supplier selection: a novel integrated fuzzy best worst method (F-BWM) and fuzzy CoCoSo with Bonferroni (CoCoSo’B) multi-criteria model. J. Clean. Prod. 266, 121981 (2020)

    Article  Google Scholar 

  27. Yazdani, M., Torkayesh, A.E., Stević, Ž, Chatterjee, P., Ahari, S.A., Hernandez, V.D.: An interval valued neutrosophic decision-making structure for sustainable supplier selection. Expert Syst. Appl. 183, 115354 (2021)

    Article  Google Scholar 

  28. Wang, C.N., Chou, C.C., Dang, T.T., Nguyen, H.P., Nguyen, N.A.T.: Integrating triple bottom line in sustainable chemical supplier selection: a compromise decision-making-based spherical fuzzy approach. Processes 10, 889 (2022)

    Article  CAS  Google Scholar 

  29. Thanh, N.V., Lan, N.T.K.: A new hybrid triple bottom line metrics and fuzzy MCDM model: sustainable supplier selection in the food-processing industry. Axioms 11, 57 (2022)

    Article  Google Scholar 

  30. Kumar, V., Kalita, K., Chatterjee, P., Zavadskas, E.K., Chakraborty, S.: A SWARA-CoCoSo-based approach for spray painting robot selection. Informatica 33, 35–54 (2022)

    Article  Google Scholar 

  31. Garg, C.P., Görçün, Ö.F., Kundu, P., Küçükönder, H.: An integrated fuzzy MCDM approach based on Bonferroni functions for selection and evaluation of industrial robots for the automobile manufacturing industry. Expert Syst. Appl. 213, 118863 (2023)

    Article  Google Scholar 

  32. Han, X., Rani, P.: Evaluate the barriers of blockchain technology adoption in sustainable supply chain management in the manufacturing sector using a novel Pythagorean fuzzy-CRITIC-CoCoSo approach. Oper. Manag. Res. 15, 725–742 (2022)

    Article  Google Scholar 

  33. Su, D., Zhang, L., Peng, H., Saeidi, P., Tirkolaee, E.B.: Technical challenges of blockchain technology for sustainable manufacturing paradigm in Industry 4.0 era using a fuzzy decision support system. Technol. Forecast. Soc. Change 188, 122275 (2023)

    Article  Google Scholar 

  34. Cui, Y., Liu, W., Rani, P., Alrasheedi, M.: Internet of Things (IoT) adoption barriers for the circular economy using Pythagorean fuzzy SWARA-CoCoSo decision-making approach in the manufacturing sector. Technol. Forecast. Soc. Chang. 171, 120951 (2021)

    Article  Google Scholar 

  35. Das, P.P., Chakraborty, S.: SWARA-CoCoSo method-based parametric optimization of green dry milling processes. J. Eng. Appl. Sci. 69, 1–21 (2022)

    Article  Google Scholar 

  36. Panchagnula, K.K., Sharma, J.P., Kalita, K., Chakraborty, S.: CoCoSo method-based optimization of cryogenic drilling on multi-walled carbon nanotubes reinforced composites. Int. J. Interact. Des. Manuf. 17, 279–297 (2023)

    Article  Google Scholar 

  37. Kharwar, P.K., Verma, R.K., Singh, A.: Neural network modeling and combined compromise solution (CoCoSo) method for optimization of drilling performances in polymer nanocomposites. J. Thermoplast. Compos. Mater. 35, 1604–1631 (2022)

    Article  CAS  Google Scholar 

  38. Torkayesh, A.E., Pamucar, D., Ecer, F., Chatterjee, P.: An integrated BWM-LBWA-CoCoSo framework for evaluation of healthcare sectors in Eastern Europe. Socioecon. Plann. Sci. 78, 101052 (2021)

    Article  Google Scholar 

  39. Tirkolaee, E.B., Torkayesh, A.E.: A cluster-based stratified hybrid decision support model under uncertainty: sustainable healthcare landfill location selection. Appl. Intell. 52, 13614–13633 (2022)

    Article  Google Scholar 

  40. Zolfani, S.H., Yazdani, M., Torkayesh, A.E., Derakhti, A.: Application of a gray-based decision support framework for location selection of a temporary hospital during COVID-19 pandemic. Symmetry 12, 886 (2020)

    Article  ADS  CAS  Google Scholar 

  41. Biswas, S.: Measuring performance of healthcare supply chains in India: a comparative analysis of multi-criteria decision making methods. Decis. Mak.: Appl. Manag. Eng. 3, 162–189 (2020)

    Google Scholar 

  42. Yazdani, M., Zarate, P., Zavadskas, E.K., Turskis, Z.: A combined compromise solution (CoCoSo) method for multi-criteria decision-making problems. Manag. Decis. 57, 2501–2519 (2019)

    Article  Google Scholar 

  43. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

    Article  Google Scholar 

  44. Dubois, D., Prade, H.: Operations on fuzzy numbers. Int. J. Syst. Sci. 9, 613–626 (1978)

    Article  MathSciNet  Google Scholar 

  45. Turskis, Z., Goranin, N., Nurusheva, A., Boranbayev, S.: A fuzzy WASPAS-based approach to determine critical information infrastructures of EU sustainable development. Sustainability 11, 424 (2019)

    Article  Google Scholar 

  46. Chen, S.H., Hsieh, C.H.: Representation, ranking, distance, and similarity of LR type fuzzy number and application. Aust. J. Intell. Process. Syst. 6, 217–229 (2000)

    Google Scholar 

  47. Atanassov, K.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20, 87–96 (1986)

    Article  Google Scholar 

  48. Montajabiha, M.: An extended PROMETHEE II multi-criteria group decision making technique based on intuitionistic fuzzy logic for sustainable energy planning. Group Decis. Negot. 25, 221–244 (2016)

    Article  Google Scholar 

  49. Mishra, A.R., Singh, R.K., Motwani, D.: Multi-criteria assessment of cellular mobile telephone service providers using intuitionistic fuzzy WASPAS method with similarity measures. Granul. Comput. 4, 511–529 (2019)

    Article  Google Scholar 

  50. Yager, R.R., Abbasov, A.M.: Pythagorean membership grades, complex numbers, and decision making. Int. J. Intell. Syst. 28, 436–452 (2013)

    Article  Google Scholar 

  51. Peng, X., Zhang, X., Luo, Z.: Pythagorean fuzzy MCDM method based on CoCoSo and CRITIC with score function for 5G industry evaluation. Artif. Intell. Rev. 53, 3813–3847 (2020)

    Article  Google Scholar 

  52. Smarandache, F.: A unifying field in logics: neutrosophic logic. In: Philosophy, American Research Press, pp. 1–141 (1999)

  53. Wang, H., Smarandache, F., Zhang, Y., Sunderraman, R.: Single valued neutrosophic sets. Multispace Multistruct. 4, 410–413 (2010)

    Google Scholar 

  54. Sahin, R. Multi-criteria neutrosophic decision making method based on score and accuracy functions under neutrosophic environment, arXiv preprint http://arxiv.org/abs/1412.5202 (2014). https://doi.org/10.48550/arXiv.1412.5202

  55. Torra, V.: Hesitant fuzzy sets. Int. J. Intell. Syst. 25, 529–539 (2010)

    Google Scholar 

  56. Mishra, A.R., Rani, P., Krishankumar, R., Zavadskas, E.K., Cavallaro, F., Ravichandran, K.S.: A hesitant fuzzy combined compromise solution framework-based on discrimination measure for ranking sustainable third-party reverse logistics providers. Sustainability 13, 2064 (2021)

    Article  Google Scholar 

  57. Reddy, P.V., Ramanjaneyulu, P., Reddy, B.V., Rao, P.S.: Simultaneous optimization of drilling responses using GRA on Al-6063/TiC composite. SN Appl. Sci. 2, 1–10 (2020)

    Article  Google Scholar 

  58. Boran, F.E., Genç, S., Kurt, M., Akay, D.: A multi-criteria intuitionistic fuzzy group decision making for supplier selection using TOPSIS method. Expert Syst. Appl. 36, 11363–11368 (2009)

    Article  Google Scholar 

  59. Chaurasiya, R., Jain, D.: Hybrid MCDM method on Pythagorean fuzzy set and its application. Decis. Mak.: Appl. Manag. Eng. 6, 379–398 (2023)

    Google Scholar 

  60. Biswas, P., Pramanik, S., Giri, B.C.: TOPSIS method for multi-attribute group decision-making under single-valued neutrosophic environment. Neural Comput. Appl. 27, 727–737 (2016)

    Article  Google Scholar 

  61. Beg, I., Rashid, T.: TOPSIS for hesitant fuzzy linguistic term sets. Int. J. Intell. Syst. 28, 1162–1171 (2013)

    Article  Google Scholar 

  62. Turskis, Z., Zavadskas, E.K., Antucheviciene, J., Kosareva, N.: A hybrid model based on fuzzy AHP and fuzzy WASPAS for construction site selection. Int. J. Comput. Commun. Control 10, 113–128 (2015)

    Article  Google Scholar 

  63. Rani, P., Mishra, A.R.: Novel single-valued neutrosophic combined compromise solution approach for sustainable waste electrical and electronics equipment recycling partner selection. IEEE Trans. Eng. Manage. 69, 3139–3153 (2020)

    Article  Google Scholar 

  64. Onar, S.Ç., Büyüközkan, G., Öztayşi, B., Kahraman, C.: A new hesitant fuzzy QFD approach: an application to computer workstation selection. Appl. Soft Comput.Comput. 46, 1–16 (2016)

    Article  Google Scholar 

  65. Rajmohan, T., Palanikumar, K., Kathirvel, M.: Optimization of machining parameters in drilling hybrid aluminium metal matrix composites. Trans. Nonferrous Metals Soc. China 22, 1286–1297 (2012)

    Article  CAS  Google Scholar 

Download references

Funding

This research has received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shankar Chakraborty.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the author(s).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatterjee, S., Chakraborty, S. A comparative study on combined compromise solution (CoCoSo)-based optimization of drilling of aluminium metal matrix composites in fuzzy environments. Int J Interact Des Manuf (2024). https://doi.org/10.1007/s12008-024-01743-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12008-024-01743-z

Keywords

Navigation