Skip to main content
Log in

Optimization of wire-cut EDM parameters using Taguchi and entropy coupled COPRAS approach for machining of CRT glass powder reinforced magnesium surface composite developed using friction stir processing

  • Original Article
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

The primary purpose of this investigation is to optimize the wire cut EDM parameters using computational Taguchi and Entropy coupled COPRAS approach. This optimization is aimed at machining the cathode ray tube (CRT) glass powder reinforced magnesium surface composite, developed using friction stir processing. The multi-objective optimization studies were performed using MINITAB software package. The mechanical properties and machinability of CRT reinforced magnesium surface composite was analysed. The regression-based parametric mathematical models were formulated to predict the material removal rate (cm3/min), kerf width (µm) and surface roughness (µm) and were validated using analysis of variance. The results showed superior strength and hardness of 15% CRT reinforced Mg surface composite on compromising the ductility. The CRT-reinforced Mg surface composite machined using the optimum parameters attained through computational hybrid approach showed the machining characteristics of 0.051 cm3/min, material removal rate, 3.673 µm surface finish and 0.357 µm kerf width respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data used to support the findings of this study are included within the article. Further data or information is available from the corresponding author upon request.

References

  1. Mehr, F.R., Salavati, M., Morgenthal, A., Kamrani, S., Fleck, C.: Computational analysis and experimental calibration of cold isostatic compaction of Mg-SiC nanocomposite powders. Mater Today Commun 27, 102321 (2021)

    Article  Google Scholar 

  2. Mahdy, A.A.: Fabrication and characterizations of Mg/SiC composite via compo-casting technique. J Am Sci 10, 196–202 (2014)

    MATH  Google Scholar 

  3. Sudhagar, S., Gopal, P.M.: Investigation on mechanical and tribological characteristics Cu/Si 3 N 4 surface composite developed through friction stir processing. Silicon 14, 1–10 (2022)

    Article  Google Scholar 

  4. Ma, Z.Y., Mishra, R.S., Mahoney, M.W., Grimes, R.: High strain rate superplasticity in friction stir processed Al–Mg–Zr alloy. Mater. Sci. Eng. A 351, 148–153 (2003)

    Article  Google Scholar 

  5. Palko, W.A., Fielder, R.S., Young, P.F.: Investigation of the use of friction stir processing to repair and locally enhance the properties of large Ni Al bronze propellers. Mater. Sci. Forum 426, 2909–14 (2003)

    Article  MATH  Google Scholar 

  6. Balasubramanian, N., Mishra, R.S., Krishnamurthy, K.: Process forces during friction stir channeling in an aluminum alloy. J. Mater. Process. Technol. 211, 305–311 (2011)

    Article  Google Scholar 

  7. Berbon, P.B., Bingel, W.H., Mishra, R.S., Bampton, C.C., Mahoney, M.W.: Friction stir processing: a tool to homogenize nanocomposite aluminum alloys. Scr. Mater. 44, 61–66 (2001)

    Article  Google Scholar 

  8. Mishra, R.S., Mahoney, M.W.: Friction stir processing: a new grain refinement technique to achieve high strain rate superplasticity in commercial alloys. Mater. Sci. Forum 357, 507–14 (2001)

    Article  MATH  Google Scholar 

  9. Ma, Z.Y., Sharma, S.R., Mishra, R.S., Mahoney, M.W.: Microstructural modification of cast aluminum alloys via friction stir processing. Mater. Sci. Forum 426, 2891–6 (2003)

    Article  MATH  Google Scholar 

  10. Ma, Z.Y., Mishra, R.S., Mahoney, M.W.: Superplastic deformation behaviour of friction stir processed 7075Al alloy. Acta Mater. 50, 4419–4430 (2002)

    Article  MATH  Google Scholar 

  11. Mishra, R.S., Ma, Z.: Friction stir welding and processing. Mater. Sci. Eng. R. Rep. 50, 1–78 (2005)

    Article  MATH  Google Scholar 

  12. Yuen, A.C.Y., Chen, T.B.Y., Wang, C., Wei, W., Kabir, I., Vargas, J.B., et al.: Utilising genetic algorithm to optimise pyrolysis kinetics for fire modelling and characterisation of chitosan/graphene oxide polyurethane composites. Compos. Part B Eng. 182, 107619 (2020)

    Article  Google Scholar 

  13. Al-Dunainawi, Y., Abbod, M.F., Jizany, A.: A new MIMO ANFIS-PSO based NARMA-L2 controller for nonlinear dynamic systems. Eng. Appl. Artif. Intell. 62, 265–275 (2017)

    Article  Google Scholar 

  14. Kavimani, V., Prakash, K.S., Thankachan, T.: Influence of machining parameters on wire electrical discharge machining performance of reduced graphene oxide/magnesium composite and its surface integrity characteristics. Compos. Part B Eng. 167, 621–630 (2019). https://doi.org/10.1016/j.compositesb.2019.03.031

    Article  Google Scholar 

  15. Kavimani, V., Prakash, K.S., Thankachan, T.: Experimental investigations on wear and friction behaviour of SiC@r-GO reinforced Mg matrix composites produced through solvent-based powder metallurgy. Compos. Part B Eng. 162, 508–521 (2019). https://doi.org/10.1016/j.compositesb.2019.01.009

    Article  Google Scholar 

  16. Gopal, P.M., Soorya Prakash, K.: Wire electric discharge machining of silica rich E-waste CRT and BN reinforced hybrid magnesium MMC. Silicon 11, 1429–40 (2019)

    Article  Google Scholar 

  17. Kavimani, V., Prakash, K.S., Thankachan, T., Nagaraja, S., Jeevanantham, A.K., Jhon, J.P.: WEDM parameter optimization for Silicon@r-GO/Magneisum composite using taguchi based GRA coupled PCA. Silicon 12, 1161–1175 (2020). https://doi.org/10.1007/s12633-019-00205-6

    Article  Google Scholar 

  18. Kavimani, V., Soorya Prakash, K., Thankachan, T.: Multi-objective optimization in WEDM process of graphene–SiC–magnesium composite through hybrid techniques. Meas. J. Int. Meas. Confed. 145, 335–349 (2019). https://doi.org/10.1016/j.measurement.2019.04.076

    Article  Google Scholar 

  19. Kumar, A., Grover, N., Manna, A., Kumar, R., Chohan, J.S., Singh, S., et al.: Multi-objective optimization of WEDM of aluminum hybrid composites using AHP and genetic algorithm. Arab. J. Sci. Eng. 47, 8031–8043 (2022)

    Article  MATH  Google Scholar 

  20. Phate, M.R., Toney, S.B., Phate, V.R.: Multi-parametric optimization of WEDM using artificial neural network (ANN)-based PCA for Al/SiCp MMC. J Inst Eng Ser C 102, 169–181 (2021)

    Article  Google Scholar 

  21. Asadi, P., Akbari, M., Karimi-Nemch, H.: Simulation of friction stir welding and processing. Adv Frict Stir Weld Process (2014). https://doi.org/10.1533/9780857094551.499

    Article  MATH  Google Scholar 

  22. Patel, V., Li, W., Xu, Y.: Stationary shoulder tool in friction stir processing: a novel low heat input tooling system for magnesium alloy. Mater. Manuf. Process. 34, 177–182 (2019)

    Article  MATH  Google Scholar 

  23. Thankachan, T., Prakash, K.S.: A microstructural, mechanical and tribological behavior of aluminum nitride reinforced copper surface composites fabricated through friction stir processing route. Mater. Sci. Eng. A 688, 301–308 (2017). https://doi.org/10.1016/j.msea.2017.02.010

    Article  MATH  Google Scholar 

  24. Gopal, P.M.: Wire electric discharge machining of silica rich E-waste CRT and BN reinforced hybrid magnesium MMC. Silicon 11, 1–12 (2018)

    MATH  Google Scholar 

  25. Gopal, P.M., Prakash, K.S., Jayaraj, S.: WEDM of Mg/CRT/BN composites: effect of materials and machining parameters. Mater Manuf Process 33, 1–8 (2017)

    MATH  Google Scholar 

  26. Prasanna, R., Gopal, P.M., Uthayakumar, M., Aravind, S.: Multicriteria optimization of machining parameters in WEDM of titanium Alloy 6242. Adv. Manuf. Technol., Springer, pp 65–75 (2019)

  27. Kavimani, V., Gopal, P.M., Sivamaran, V., Anand, B.K.: Investigations on the WEDM of friction stir processed magnesium/graphene-boron nitride hybrid surface composite through the entropy-COPRAS approach. Adv Mater Sci Eng (2022). https://doi.org/10.1155/2022/7592552

    Article  Google Scholar 

  28. Murugesan, S.K., Natarajan, J., Yang, C.-H., Vijayananth, K.: A synergistic impact of LPBF process parameters on attaining a defect-free Cu-Cr-Zr alloy parts: an analytical and experimental study. Int. J. Adv. Manuf. Technol. 128, 3507–3529 (2023)

    Article  Google Scholar 

  29. Kumar, M.S., Yang, C.-H., Farooq, M.U., Kavimani, V., Adesoji, A.A.: Enhanced structural integrity of laser powder bed fusion based AlSi10Mg parts by attaining defect free melt pool formations. Sci. Rep. 13, 16672 (2023)

    Article  Google Scholar 

  30. Preethi, V., Kavimani, V., Gopal, P.M.: Electrochemical micro-machining of hybrid graphene/silicon nitride-reinforced magnesium composite through integrated Entropy-COPRAS approach. Multiscale Multidiscip Model Exp Des 1–13 (2023). https://doi.org/10.1007/s41939-023-00258-6

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Gopal.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gopal, P.M., Kavimani, V., Sudhagar, S. et al. Optimization of wire-cut EDM parameters using Taguchi and entropy coupled COPRAS approach for machining of CRT glass powder reinforced magnesium surface composite developed using friction stir processing. Int J Interact Des Manuf (2024). https://doi.org/10.1007/s12008-023-01705-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12008-023-01705-x

Keywords

Navigation