Skip to main content
Log in

Electrochemical analysis of friction welded 17-4 PH stainless steel components manufactured by selective laser melting

  • Original Article
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

17-4 precipitation-hardenable stainless steel (17-4PH SS) finds essential applications in aerospace, chemical processing, and in oil and petroleum industries. The studies related to friction welding on selective laser melted (SLM) components are limited and depend on the material chosen. The present study aims to understand the friction welding of similar 17-4 PH SS fabricated by the SLM technique. X-ray diffraction analysis confirms the presence of austenitic and martensitic phases in both the base metal (BM) and the weld zone (WZ). Due to dynamic recrystallization, the microstructural changes are observed with columnar grains in the BM to refined equiaxed grains in the WZ. The homogenous microstructure is reflected in the hardness measurements of the WZ showing a uniform hardness distribution. Hardness at the WZ is decreased by about 17% than the BM. Corrosion studies through potentio dynamic polarisation analysis reveal that the BM is nobler towards corrosion than the WZ and wrought material. This study would pave the way for future studies on dissimilar weld joint analysis involving 17-4 PH SS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available upon reasonable request.

References

  1. Hu, Z., Zhu, H., Zhang, H., Zeng, X.: Experimental investigation on selective laser melting of 17-4PH stainless steel. Opt. Laser Technol. 87, 17–25 (2017). https://doi.org/10.1016/j.optlastec.2016.07.012

    Article  Google Scholar 

  2. Sokkalingam, R., Sivaprasad, K., Singh, N., et al.: Subtle change in the work hardening behavior of FCC materials processed by selective laser melting. Prog. Addit. Manuf. 7, 453–461 (2022). https://doi.org/10.1007/s40964-022-00301-x

    Article  Google Scholar 

  3. Gokuldoss, P.K., Kolla, S., Eckert, J.: Additive manufacturing processes: selective laser melting, electron beam melting and binder jetting—selection guidelines. Materials (Basel) 10, 672 (2017). https://doi.org/10.3390/ma10060672

    Article  Google Scholar 

  4. Prashanth, K.G., Scudino, S., Klauss, H.J., et al.: Microstructure and mechanical properties of Al–12Si produced by selective laser melting: effect of heat treatment. Mater. Sci. Eng. A 590, 153–160 (2014). https://doi.org/10.1016/j.msea.2013.10.023

    Article  Google Scholar 

  5. Kumar, D.P., Kumaran, S.: Evaluating the microstructural, mechanical, and electrochemical behavior of spark plasma-assisted dissimilar joining of 17-4 PH stainless steel to Inconel 718. J. Mater. Eng. Perform. (2022). https://doi.org/10.1007/s11665-022-07691-7

    Article  Google Scholar 

  6. Feng, B., Deng, Y., Feng, X., et al.: Interfacial reaction and mechanical properties of diffusion bonded titanium/17-4 PH stainless steel dissimilar joint using a silver interlayer. Mater. Res. Express 7, 116518 (2020). https://doi.org/10.1088/2053-1591/abc910

    Article  Google Scholar 

  7. Borchers, T.E., Hahn, M.E., Lowiec, B.A., Tung, D.J.: Dissimilar GTAW Stainless Steel Welding. (Poster- Ohio state univ) 304

  8. Li, W., Vairis, A., Preuss, M., Ma, T.: Linear and rotary friction welding review. Int. Mater. Rev. 61, 71–100 (2016). https://doi.org/10.1080/09506608.2015.1109214

    Article  Google Scholar 

  9. Muralimohan, C.H., Ashfaq, M., Ashiri, R., et al.: Analysis and characterization of the role of Ni interlayer in the friction welding of titanium and 304 austenitic stainless steel. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 47, 347–359 (2016). https://doi.org/10.1007/s11661-015-3210-z

    Article  Google Scholar 

  10. Muralimohan, C.H., Haribabu, S., Reddy, Y.H., et al.: Evaluation of microstructures and mechanical properties of dissimilar materials by friction welding. Procedia Mater. Sci. 5, 1107–1113 (2014). https://doi.org/10.1016/j.mspro.2014.07.404

    Article  Google Scholar 

  11. Garcia-Cabezon, C., Castro-Sastre, M.A., Fernandez-Abia, A.I., et al.: Microstructure–hardness–corrosion performance of 17-4 precipitation hardening stainless steels processed by selective laser melting in comparison with commercial alloy. Met. Mater. Int.. Mater. Int. 28, 2652–2667 (2022). https://doi.org/10.1007/s12540-021-01155-8

    Article  Google Scholar 

  12. Stoudt, M.R., Ricker, R.E., Lass, E.A., Levine, L.E.: Influence of postbuild microstructure on the electrochemical behavior of additively manufactured 17-4 PH stainless steel. JOM 69, 506–515 (2017). https://doi.org/10.1007/s11837-016-2237-y

    Article  Google Scholar 

  13. Ko, G., Kim, W., Kwon, K., Lee, T.-K.: The corrosion of stainless steel made by additive manufacturing: a review. Metals (Basel) 11, 516 (2021). https://doi.org/10.3390/met11030516

    Article  Google Scholar 

  14. Schaller, R.F., Taylor, J.M., Rodelas, J., Schindelholz, E.J.: Corrosion properties of powder bed fusion additively manufactured 17-4 PH stainless steel. Corrosion 73, 796–807 (2017). https://doi.org/10.5006/2365

    Article  Google Scholar 

  15. Alnajjar, M.: Corrosion properties of 17-4 PH martensitic stainless steel obtained by additive manufacturing. (Thesis) (2020)

  16. Chigilipalli, B.K., Veeramani, A.: Investigation of the corrosion behavior of wire arc additively manufactured alloy 825. Trans. Indian Inst. Met. 76, 279–286 (2023). https://doi.org/10.1007/s12666-022-02656-9

    Article  Google Scholar 

  17. Prashanth, K.G., Damodaram, R., Scudino, S., et al.: Friction welding of Al-12Si parts produced by selective laser melting. Mater. Des. 57, 632–637 (2014). https://doi.org/10.1016/j.matdes.2014.01.026

    Article  Google Scholar 

  18. Prashanth, K.G., Damodaram, R., Maity, T., et al.: Friction welding of selective laser melted Ti6Al4V parts. Mater. Sci. Eng. A 704, 66–71 (2017). https://doi.org/10.1016/j.msea.2017.08.004

    Article  Google Scholar 

  19. Zhao, Z., Wang, H., Huo, P., et al.: Effect of Solution temperature on the microstructure and properties of 17-4PH high-strength steel samples formed by selective laser melting. Metals (Basel) 12, 425 (2022). https://doi.org/10.3390/met12030425

    Article  Google Scholar 

  20. Kotecki, D.J., Siewert, T.A.: WRC-1992 Constitution diagram for stainless steel weld metals: a modification of the WRC-1988 Diagram. In: AWS Annu Meet, pp 171–178 (1992)

  21. Nowacki, J.: Weldability of 17-4 PH stainless steel in centrifugal compressor impeller applications. J. Mater. Process. Technol. 157–158, 578–583 (2004). https://doi.org/10.1016/j.jmatprotec.2004.07.117

    Article  Google Scholar 

  22. Zai, L., Zhang, C., Wang, Y., et al.: Laser powder bed fusion of precipitation-hardened martensitic stainless steels: a review. Metals (Basel) 10, 255 (2020). https://doi.org/10.3390/met10020255

    Article  Google Scholar 

  23. Ziewiec, A., ZieliŃska-Lipiec, A., Tasak, E.: Microstructure of welded joints of X5CrNiCuNb16-4 (17-4 PH) martensitic stainlees steel after heat treatment. Arch. Metall. Mater. 59, 965–970 (2014). https://doi.org/10.2478/amm-2014-0162

    Article  Google Scholar 

  24. Schmuki, P., Hildebrand, H., Friedrich, A., Virtanen, S.: The composition of the boundary region of MnS inclusions in stainless steel and its relevance in triggering pitting corrosion. Corros. Sci.. Sci. 47, 1239–1250 (2005). https://doi.org/10.1016/j.corsci.2004.05.023

    Article  Google Scholar 

  25. Yang, S., Zhao, M., Feng, J., et al.: Induced-pitting behaviors of MnS inclusions in steel. High Temp. Mater. Process. 37, 1007–1016 (2018). https://doi.org/10.1515/htmp-2017-0155

    Article  Google Scholar 

  26. Li, N., Yan, H., Wang, X., et al.: Effect of copper on microstructure and corrosion resistance of hot rolled 301 stainless steel. Metals (Basel) 13, 170 (2023). https://doi.org/10.3390/met13010170

    Article  Google Scholar 

  27. Park, S.H.C., Sato, Y.S., Kokawa, H., et al.: Corrosion resistance of friction stir welded 304 stainless steel. Scr. Mater. 51, 101–105 (2004). https://doi.org/10.1016/j.scriptamat.2004.04.001

    Article  Google Scholar 

  28. Raja, K.S., Rao, K.P.: Pitting behavior of type 17-4 PH stainless steel weldments. Corrosion 51, 586–592 (1995). https://doi.org/10.5006/1.3293618

    Article  Google Scholar 

  29. Raja, K.S., Prasad Rao, K.: Intergranular and general corrosion behaviour of 17-4 PH weldments. Mater. Corros.Corros. 46, 534–538 (1995). https://doi.org/10.1002/maco.19950460905

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the SPARC program (SPARC/2018-2019/P361/SL) from the Ministry of Human Resources and Development (MHRD), Government of India, for the financial support. Funding from the European scholarship (Dora plus) is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

LD: Methodology, Data Curation, Validation, Formal Analysis, Investigation, Writing – original draft preparation. RNK: Data Curation, Formal Analysis, Investigation, Writing – original draft preparation. KGP: Validation, Writing – Reviewing and Editing, Resources, Supervision. KS: Conceptualization, Validation, Writing – Reviewing and Editing, Resources, Supervision, Funding Acquisition.

Corresponding author

Correspondence to K. Sivaprasad.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dinesh, L., Nitheesh Kumar, R., Prashanth, K.G. et al. Electrochemical analysis of friction welded 17-4 PH stainless steel components manufactured by selective laser melting. Int J Interact Des Manuf (2023). https://doi.org/10.1007/s12008-023-01659-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12008-023-01659-0

Keywords

Navigation