Skip to main content
Log in

Life cycle assessment of sustainable turning techniques for pure titanium alloy: a comparative analysis

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

The current study has been conducted comparing two different cutting approaches in order to turning of pure Titanium (grade II) alloy. The Minimum Quantity Lubrication (MQL) and an upgraded version of MQL using Ranque-Hilsch vortex tube (RHVT) have been compared. Furthermore, Life cycle assessment has been executed using SimaPro version 9.0 in combination with ReCiPe midpoint (H) impact assessment method. A careful analysis of the twenty-six experiments, designed based on response surface methodology divulged that, overall process within the chosen system boundaries significantly affected most of environmental indicators (EI’s) related to toxicity namely freshwater ecotoxicity, marine ecotoxicity, terrestrial ecotoxicity, human carcinogenic toxicity and human non carcinogenic toxicity. With the most preformed impact at the parametric combinations (vc = 250, f = 0.05, ae = 0.4) and (vc = 275, f = 0.5, ae = 0.5) for both cooling strategies Furthermore, the overall normalized impact serve for RHVT was found to be lower than the MQL techniques, accentuating its usefulness towards sustainability improvement. It has also been found that majority of the impact contribution has been made by the EI’s related to human health, when compared to the EIs related to resources or ecosystems. To sum up, it can be concluded that using an RHVT in combination with the MQL cooling technique has potential to improve the overall sustainability of machining process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

Data will be made available on request.

Abbreviations

LCA:

Life cycle assessment

LCI:

Life cycle inventory

MQL:

Minimum quantity lubrication

RHVT:

Ranque-Hilsch vortex tube

EI’s:

Environmental indicators

RSM:

Response surface methodology

Vc :

Cutting speed

F:

Feed

ae :

Depth of cut

IUCN:

International union for conservation of nature

MWF:

Metal working fluids (MWF)

ISO:

International standard organization

SLCA:

Streamlined life cycle assessment

FU:

Functional unit

EE:

Electrical energy

References

  1. Abubakr, M., Abbas, A.T., Tomaz, I., Soliman, M.S., Luqman, M., Hegab, H.: Sustainable and smart manufacturing: an integrated approach. Sustainability 12, 19 (2020). https://doi.org/10.3390/su12062280

    Article  Google Scholar 

  2. Chaurasiya, S., Singh, G.: Life cycle assessment of nanocomposite manufactured using ultrasonic stir casting. J. Mater. Sci. 58, 5298–5318 (2023). https://doi.org/10.1007/s10853-023-08363-0

    Article  Google Scholar 

  3. Machado, C.G., Winroth, M.P., Hans, E., Ribeiro, D., Gonçalves, C., Winroth, M.P., Hans, E., Ribeiro, D.: Sustainable manufacturing in industry 4.0: an emerging research agenda. Int. J. Prod. Res. 7543, 24 (2020). https://doi.org/10.1080/00207543.2019.1652777

    Article  Google Scholar 

  4. Stock, T., Seliger, G.: Opportunities of sustainable manufacturing in industry 4.0. Proc. CIRP 40, 536–541 (2016). https://doi.org/10.1016/j.procir.2016.01.129

    Article  Google Scholar 

  5. Hami, N., Razali, M., Ebrahim, Z.: The impact of sustainable manufacturing practices and innovation performance on economic sustainability. Proc. CIRP 26, 190–195 (2015). https://doi.org/10.1016/j.procir.2014.07.167

    Article  Google Scholar 

  6. Adams, W.M.: The Future of Sustainability: Re-thinking Environment and Development in the Twenty-first Century Stainability, Cambridge, UK (2006)

  7. Mirer, F.E.: New evidence on the health hazards and control of metalworking fluids since completion of the OSHA advisory committee report. Am. J. Ind. Med. 801, 792–801 (2010). https://doi.org/10.1002/ajim.20853

    Article  Google Scholar 

  8. Graham, D.: Dry machining. Manuf. Eng. 121, 72–78 (2000)

    Google Scholar 

  9. Winter, M., Thiede, S., Herrmann, C.: Influence of the cutting fluid on process energy demand and surface roughness in grinding—a technological environmental and economic examination. Int. J. Adv. Manuf. Technol. (2017). https://doi.org/10.1007/s00170-014-6557-1

    Article  Google Scholar 

  10. Astakhov, V.P.: Ecological Machining: Near-dry Machining BT-Machining: Fundamentals and Recent Advances. Presented at the (2008)

  11. Tasdelen, B., Wikblom, T., Ekered, S.: Studies on minimum quantity lubrication (MQL) and air cooling at drilling. J. Mater. Process. Technol. 200, 339–346 (2008). https://doi.org/10.1016/j.jmatprotec.2007.09.064

    Article  Google Scholar 

  12. Ji, X., Li, B., Zhang, X., Liang, S.Y.: The effects of minimum quantity lubrication (MQL) on machining force, temperature, and residual stress. Int. J. Precis. Eng. Manuf. 15, 2443–2451 (2014). https://doi.org/10.1007/s12541-014-0612-6

    Article  Google Scholar 

  13. Rahim, E.A., Ibrahim, M.R., Rahim, A.A., Aziz, S., Mohid, Z.: Experimental investigation of minimum quantity lubrication (MQL) as a sustainable cooling technique. Proc. CIRP 26, 351–354 (2015). https://doi.org/10.1016/j.procir.2014.07.029

    Article  Google Scholar 

  14. Sharma, A.K., Tiwari, A.K., Dixit, A.R.: Effects of minimum quantity lubrication (MQL) in machining processes using conventional and nanofluid based cutting fluids: a comprehensive review. J. Clean. Prod. 127, 1–18 (2016). https://doi.org/10.1016/j.jclepro.2016.03.146

    Article  Google Scholar 

  15. Race, A., Zwierzak, I., Secker, J., Walsh, J., Carrell, J., Slatter, T., Maurotto, A.: Environmentally sustainable cooling strategies in milling of SA516: effects on surface integrity of dry, flood and MQL machining. J. Clean. Prod. 288, 125580 (2021). https://doi.org/10.1016/j.jclepro.2020.125580

    Article  Google Scholar 

  16. Feng, S., Joung, C., Li, G.: Development overview of sustainable manufacturing metrics. 17th CIRP international conference on life cycle engineering. vol. 6, p. 12 (2010)

  17. Gotkhindikar, N.N., Singh, M., Kataria, R.: Optimized deep neural network strategy for best parametric selection in fused deposition modelling. Int. J. Interact. Des. Manuf. (2023). https://doi.org/10.1007/s12008-023-01369-7

    Article  Google Scholar 

  18. Böhringer, C., Jochem, P.E.P.: Measuring the immeasurable–a survey of sustainability indices. Ecol. Econ. 63, 1–8 (2007). https://doi.org/10.1016/j.ecolecon.2007.03.008

    Article  Google Scholar 

  19. Tseng, M.L., Divinagracia, L., Divinagracia, R.: Evaluating firm’s sustainable production indicators in uncertainty. Comput. Ind. Eng. 57, 1393–1403 (2009). https://doi.org/10.1016/j.cie.2009.07.009

    Article  Google Scholar 

  20. Singh, R.K., Murty, H.R., Gupta, S.K., Dikshit, A.K.: An overview of sustainability assessment methodologies. Ecol. Indic. 15, 281–299 (2012). https://doi.org/10.1016/j.ecolind.2011.01.007

    Article  Google Scholar 

  21. Shuaib, M., Seevers, D., Zhang, X., Badurdeen, F., Rouch, K.E., Jawahir, I.S.: Product sustainability index (ProdSI): a metrics-based framework to evaluate the total life cycle sustainability of manufactured products shuaib et al. prodsi framework to evaluate product sustainability. J. Ind. Ecol. 18, 491–507 (2014). https://doi.org/10.1111/jiec.12179

    Article  Google Scholar 

  22. Jayal, A.D., Badurdeen, F., Dillon, O.W., Jawahir, I.S.: Sustainable manufacturing: modeling and optimization challenges at the product, process and system levels. CIRP J. Manuf. Sci. Technol. 2, 144–152 (2010). https://doi.org/10.1016/j.cirpj.2010.03.006

    Article  Google Scholar 

  23. de Silva, N., Jawahir, I.S., Dillon, O., Russell, M.: A new comprehensive methodology for the evaluation of product sustainability at the design and development stage of consumer electronic products. Int. J. Sustain. Manuf. 1, 14 (2009)

    Google Scholar 

  24. Jawahir, I., Jr, O.W.D.: Sustainable manufacturing processes: new challenges for developing predictive models and optimization techniques. Proceeding of first international conference sustainable manufacturing. pp. 1–19 (2007)

  25. Sen, B., Yadav, S.K., Kumar, G., Mukhopadhyay, P., Ghosh, S.: Performance of eco-benign lubricating/cooling mediums in machining of super alloys: a comprehensive review from the perspective of triple bottom line theory. Sustain. Mater. Technol. 35, e00578 (2023). https://doi.org/10.1016/j.susmat.2023.e00578

    Article  Google Scholar 

  26. Gupta, M.K., Korkmaz, M.E.: A conceptual framework for sustainability impact assessment in machining bohler tool steel under hBN-enriched nano cutting fluids environment. Sustain. Mater. Technol. 37, e00669 (2023). https://doi.org/10.1016/j.susmat.2023.e00669

    Article  Google Scholar 

  27. Bergs, T., Grünebaum, T., Fricke, K., Barth, S., Ganser, P.: Life cycle assessment for milling of Ti-and Ni-based alloy aero engine components. Proc. CIRP 98, 625–630 (2021). https://doi.org/10.1016/j.procir.2021.01.165

    Article  Google Scholar 

  28. Vukelic, D., Simunovic, K., Simunovic, G., Saric, T., Kanovic, Z., Budak, I., Agarski, B.: Evaluation of an environment-friendly turning process of Inconel 601 in dry conditions. J. Clean. Prod. 266, 121919 (2020). https://doi.org/10.1016/j.jclepro.2020.121919

    Article  Google Scholar 

  29. Sivalingam, V., Zhou, Q., Selvam, B., Sun, J., Pandiyan, K., Gupta, M.K., Korkmaz, M.E.: A mathematical approach of evaluating sustainability indicators in milling of aluminium hybrid composite by different eco-friendly cooling strategies. Sustain. Mater. Technol. 36, e00605 (2023). https://doi.org/10.1016/j.susmat.2023.e00605

    Article  Google Scholar 

  30. Silva, D.A.L., Filleti, R.A.P., Christoforo, A.L., Silva, E.J., Ometto, A.R.: Application of life cycle assessment (LCA) and design of experiments (DOE) to the monitoring and control of a grinding process. Proc. CIRP 29, 508–513 (2015). https://doi.org/10.1016/j.procir.2015.01.037

    Article  Google Scholar 

  31. Daniyan, I., Mpofu, K., Ramatsetse, B., Gupta, M.: Review of life cycle models for enhancing machine tools sustainability: lessons, trends and future directions. Heliyon 7, e06790 (2021). https://doi.org/10.1016/j.heliyon.2021.e06790

    Article  Google Scholar 

  32. He, Y., Zhang, J., Wang, X., Li, Y., Tian, X., Wang, Y.: A process scenario oriented life cycle assessment framework for machining processes. Proc. CIRP 105, 332–338 (2022). https://doi.org/10.1016/j.procir.2022.02.055

    Article  Google Scholar 

  33. Fernando, W.L.R., Karunathilake, H.P., Gamage, J.R.: Strategies to reduce energy and metalworking fluid consumption for the sustainability of turning operation: a review. Clean. Eng. Technol. 3, 100100 (2021). https://doi.org/10.1016/j.clet.2021.100100

    Article  Google Scholar 

  34. Jiménez-González, C., Kim, S., Overcash, M.R.: Methodology for developing gate-to-gate life cycle inventory information. Int. J. Life Cycle Assess. 5, 153–159 (2000). https://doi.org/10.1007/BF02978615

    Article  Google Scholar 

  35. Finnveden, G., Hauschild, M.Z., Heijungs, R., Hellweg, S., Koehler, A., Pennington, D., Suh, S.: Recent developments in life cycle assessment. J. Environ. Manag. 91(1), 1–21 (2009)

    Article  Google Scholar 

  36. Khanna, N., Shah, P., Wadhwa, J., Pitroda, A., Schoop, J., Pusavec, F.: Energy consumption and lifecycle assessment comparison of cutting fluids for drilling titanium alloy. Proc. CIRP 98, 175–180 (2021). https://doi.org/10.1016/j.procir.2021.01.026

    Article  Google Scholar 

  37. Mia, M., Gupta, M.K., Lozano, J.A., Carou, D., Pimenov, D.Y., Królczyk, G., Khan, A.M., Dhar, N.R.: Multi-objective optimization and life cycle assessment of eco-friendly cryogenic N2 assisted turning of Ti-6Al-4V. J. Clean. Prod. 210, 121–133 (2019). https://doi.org/10.1016/j.jclepro.2018.10.334

    Article  Google Scholar 

  38. Gross, D., Hanenkamp, N.: Energy efficiency assessment of cryogenic minimum quantity lubrication cooling for milling operations. Proc. CIRP 98, 523–528 (2021). https://doi.org/10.1016/j.procir.2021.01.145

    Article  Google Scholar 

  39. Daniyan, I., Mpofu, K., Bello, K., Muvunzi, R.: Life cycle assessment for the milling operation of titanium alloy (Ti6Al4V). Proc. CIRP 105, 811–816 (2022). https://doi.org/10.1016/j.procir.2022.02.134

    Article  Google Scholar 

  40. Campitelli, A., Cristóbal, J., Fischer, J., Becker, B., Schebek, L.: Resource efficiency analysis of lubricating strategies for machining processes using life cycle assessment methodology. J. Clean. Prod. 222, 464–475 (2019). https://doi.org/10.1016/j.jclepro.2019.03.073

    Article  Google Scholar 

  41. Chaurasiya, S., Singh, G.: Sustainability assessment comparison of cutting fluid for turning of titanium alloy grade II. Process Integr. Optim. Sustain. (2023). https://doi.org/10.1007/s41660-023-00322-1

    Article  Google Scholar 

  42. Gupta, M., Song, Q., Liu, Z., Pruncu, C., Mia, M., Singh, G., Lozano, J., Carou, D., Khan, D.A., Jamil, M., Pimenov, D.: Machining characteristics based life cycle assessment in eco-benign turning of pure titanium alloy. J. Clean. Prod. 251, 119598 (2020). https://doi.org/10.1016/j.jclepro.2019.119598

    Article  Google Scholar 

  43. García, N., Fernández-Torres, M.J., Caballero, J.A.: Simultaneous environmental and economic process synthesis of isobutane alkylation. J. Clean. Prod. 81, 270–280 (2014). https://doi.org/10.1016/j.jclepro.2014.06.016

    Article  Google Scholar 

  44. Subramanian, V., Golden, J.S.: Patching life cycle inventory (LCI) data gaps through expert elicitation: case study of laundry detergents. J. Clean. Prod. 115, 354–361 (2016). https://doi.org/10.1016/j.jclepro.2015.11.098

    Article  Google Scholar 

  45. Pereira, O., Rodríguez, A., Fernández-Abia, A.I., Barreiro, J., López de Lacalle, L.N.: Cryogenic and minimum quantity lubrication for an eco-efficiency turning of AISI 304. J. Clean. Prod. 139, 440–449 (2016). https://doi.org/10.1016/j.jclepro.2016.08.030

    Article  Google Scholar 

  46. Singh, G., Pruncu, C.I., Gupta, M.K., Mia, M., Khan, A.M., Jamil, M., Pimenov, D.Y., Sen, B., Sharma, V.S.: Investigations of machining characteristics in the upgraded MQL-assisted turning of pure titanium alloys using evolutionary algorithms. Materials 12, 1–17 (2019). https://doi.org/10.3390/ma12060999

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurraj Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaurasiya, S., Singh, G. Life cycle assessment of sustainable turning techniques for pure titanium alloy: a comparative analysis. Int J Interact Des Manuf (2023). https://doi.org/10.1007/s12008-023-01546-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12008-023-01546-8

Keywords

Navigation