Skip to main content
Log in

Design and fabrication of internal mixer and filament extruder for extraction of hybrid filament composite for FDM applications

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

Additive manufacturing is an advanced manufacturing technology to produce components with superior quality, aesthetic shape, less wastage and reduced production time. Fused deposition modeling (FDM) is one of the additive manufacturing techniques adopted by small scale industries as it is most economical and produces compact sized components. Even though, the lack of feedstock (i.e., filament) material leads to increase in overall manufacturing cost. This paper explores design and fabrication of internal mixer (IM) and filament extruder for blending of composite materials, production of polymer filaments and hybrid composite filaments (i.e., polymer filaments with reinforcement of natural fibers) for FDM applications. The polylactic acid polymer, bamboo natural fibers and maleic anhydride compatibilizer are taken as a raw material. The internal mixer has been fabricated successfully is the most economical approach as compared to commercially available IM. The result shows that, the developed IM produces 250 g of blended mixture (i.e., combination of polymers, natural fibers and plasticizers) in a duration of 30 min. Also, the designed and fabricated portable filament extruder tested and extracted continuous polymer and hybrid filaments with a diameter ranging from 1.6 to 2 mm and mass flow rate of 15.6 mm3/s respectively. In addition, the obtained filament having no warping, without clogging, no under and over extrusion, more precise and most economical as compared to existing filament extruders. The developed IM and filament extruder are adequate to small scale vendors and industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Dixit, A.R., Srivastava, A.K., Dwivedi, S., Nag, A., Hloch, S.: An investigation on microstructural features and bonding strength of magnesium-based multifunctional laminated composite developed by friction stir additive manufacturing. Int. J. Adv. Manuf. Technol. 128, 531–546 (2023)

    Google Scholar 

  2. Davim, J.P.: Additive and Subtractive Manufacturing. Aveiro, Portugal (2020)

    Google Scholar 

  3. Mpofu, T.P., Mawere, C., Mukosera, M.: The impact and application of 3D printing technology. Int. J. Sci. Res. 3, 2148–2152 (2014)

    Google Scholar 

  4. Elakkad, A.S.: 3D Technology in the automotive industry. Int. J. Eng. Res. Technol. 8, 277–308 (2019)

    Google Scholar 

  5. Adin, M.S., Batman Kılıçkap, E.: Strength of double-reinforced adhesive joints. Mater. Tes. 63(2), 176–181 (2021)

    Google Scholar 

  6. Manjaiah, M., Raghavendra, K., Balashanmugam, N., Davim, J.P.: Additive manufacturing. In: A Tool for Industrial Revolution 4.0, Elsevier (2021)

  7. Sai Kalyan, M.V., Kumar, H., Nagdeve, L.: Latest trends in additive manufacturing. IOP Conf. Ser. Mater. Sci. Eng. 1104, 012020 (2021)

    Google Scholar 

  8. Wong, K.V., Hernandez, A.: A review of additive manufacturing. ISRN Mech. Eng. 2012, 1–10 (2012)

    Google Scholar 

  9. Jiménez, M., Romero, L., Domínguez, I.: Additive manufacturing technologies: an overview about 3D printing methods and future prospects. Complexity 2019, 1–30 (2019)

    Google Scholar 

  10. Sehrawat, S., Kumar, A., Prabhakar, M., Nindra, J.: The expanding domains of 3D printing pertaining to the speciality of orthodontics. Mater. Today Proc. 50, 1611–1618 (2022)

    Google Scholar 

  11. Shashi, G.M., Laskar, A.R., Biswas, H.: A brief review of additive manufacturing with applications. In: Proceedings of the 14th Global Engineering and Technology Conference 2017, pp. 1–23 (2017)

  12. Pradeepkumar, C., Karthikeyan, S., Rajini, N., Budholiya, S., Raj, S.A.: A contemporary review on additive manufactured biomedical implants. Mater. Today Proc. 46, 8812–8816 (2021)

    Google Scholar 

  13. Pou, J., Riveiro, A., Davim, J.P.: Additive Manufacturing. Elsevier, New York (2021)

    Google Scholar 

  14. Bertolino, M., Battegazzore, D., Arrigo, R., Frache, A.: Designing 3D printablepolypropylene: material and process optimisation through rheology. Addit. Manuf. 40, 101944 (2021)

    Google Scholar 

  15. Zhang, Z., Gao, X.: Polypropylene random copolymer based composite used for fused filament fabrication: printability and properties. Polymers 14(6), 1106 (2022)

    Google Scholar 

  16. Samykano, M., Selvamani, S.K., Kadirgama, K., Ngui, W.K., Kanagaraj, G., Sudhakar, K.: Mechanical property of FDM printed ABS: influence of printing parameters. Int. J. Adv. Manuf. Technol. 102(9–12), 2779–2796 (2019)

    Google Scholar 

  17. Wichniarek, R., Hamrol, A., Kuczko, W., Górski, F., Rogalewicz, M.: ABS filament moisture compensation possibilities in the FDM process. CIRP J. Manuf. Sci. Technol. 35, 550–559 (2021)

    Google Scholar 

  18. Kumar, A., Mittal, R.K., Haleem, A.: Advances in Additive Manufacturing: Artificial Intelligence, Nature-Inspired, and Biomanufacturing. Elesevier, New York (2022)

    Google Scholar 

  19. Yao, T., Deng, Z., Zhang, K., Li, S.: A method to predict the ultimate tensile strength of 3D printing polylactic acid (PLA) materials with different printing orientations. Compos. Part B Eng. 2019(163), 393–402 (2019)

    Google Scholar 

  20. Wach, R.A., Wolszczak, P., Wlodarczyk, A.A.: Enhancement of mechanical properties of FDM-PLA parts via thermal annealing. Macromol. Mater. Eng. 303(9), 1–9 (2018)

    Google Scholar 

  21. Holbery, J., Houston, D.: Natural-fiber-reinforced polymer composites in automotive applications. Jom 58(11), 80–86 (2006)

    Google Scholar 

  22. Adin, H., Şükrü, M.A.: Effect of particles on tensile and bending properties of jute epoxy composites. Materia Test. 64(3), 401–411 (2022)

    Google Scholar 

  23. Gholampour, A., Ozbakkaloglu, T.: A review of natural fiber composites: properties, modification and processing techniques, characterization. Appl. J. Mater. Sci. 55, 829–892 (2020)

    Google Scholar 

  24. Milosevic, M., Stoof, D., Pickering, K.L.: Characterizing the mechanical properties of fused deposition modelling natural fiber recycled polypropylene composites. J. Compos. Sci. 1(1), 1–7 (2017)

    Google Scholar 

  25. Ahmad, M.N., Wahid, M.K., Maidin, N.A., Rahman, M.H.A.: Mechanical characteristics of oil palm fiber reinforced thermoplastics as filament for fused deposition modeling (FDM). Int. J. Adv. Manuf. Technol. 8, 1–13 (2020)

    Google Scholar 

  26. Tekinalp, H.L., Kunc, V., Velez-Garcia, G.M., Duty, C.E., Love, L.J., Naskar, A.K., Blue, C.A., Ozcan, S.: Highly oriented carbon fiber-polymer composites via additive manufacturing. Compos. Sci. Technol. 105, 144–150 (2014)

    Google Scholar 

  27. Orisaleye, J.I., Adefuye, O.A., Ogundare, A.A., Fadipe, O.L.: Parametric analysis and design of a screw extruder for slightly Non-Newtonian (pseudoplastic) materials. Eng. Sci. Technol. Int. J. 21(2), 229–237 (2018)

    Google Scholar 

  28. Harimalairajan, K., Sadhananthan, S.M.: Development of plastic filament extruder for 3D-printing. Int. J. Mech. Prod. Eng. 4, 32–35 (2016)

    Google Scholar 

  29. Aminur, M., Zainal, I., Mat, S., Sam, M.S., Faiz, R., Alkahari, M.R., Kudus, S.I.A.: Design and development of 3D printer filament extruder. Proc. Mech. Eng. Res 2020, 293–294 (2020)

    Google Scholar 

  30. Nassar, A., Nassar, E., Younis, M.: A novel design to external filament extruder for 3D printer. Aust. J. Mech. Eng. 00, 1–8 (2019)

    Google Scholar 

  31. Nassar, M.A., El Farahaty, M.A., Ibrahim, S., Hassan, Y.R.: Design of 3D filament extruder for fused deposition modeling (FDM) additive manufacturing. Int. Des J. 9(4), 55–62 (2014)

    Google Scholar 

  32. David, M.W., Jonathan, K.P.: Design and fabrication of a low-cost pilot-scale melt-processing system. Polymers 181, 121802 (2019)

    Google Scholar 

  33. Hemlata, P., Roshan, V.T., Michael, A.R.: Hot-melt extrusion: from theory to application in pharmaceutical formulation. AAPS Pharm. Sci. Tech. 17(1), 20–42 (2016)

    Google Scholar 

  34. Sathish Kumar, A., Jagadish: Prospects of natural fiber-reinforced polymer composites for additive manufacturing applications : a review. Jom 75, 920–940 (2023)

    Google Scholar 

  35. Jailani, N., Ibrahim, A.N.H., Rahim, A., Abdul Hassan, N., Nur, N.I.: Chemical and physical properties of poly (lactic) acid modified bitumen. Ain Shams Eng. J. 12(3), 2631–2642 (2021)

    Google Scholar 

  36. Andersen, P., Shih, C.K., Spalding, M.A., Wetzel, M.D., Womer, T.W.: Breakthrough inventions in polymer extrusion. SPE ANTECH 55, 668–677 (2009)

    Google Scholar 

  37. Mikulionok, I., Gavva, O., Kryvoplias-Volodina, L.: Modeling the process of polymers processing in twin­screw extruders. East. Eur. J. Enterp. Technol. 4(5–94), 35–44 (2018)

    Google Scholar 

  38. Sang, L., Han, S., Li, Z., Yang, X., Hou, W.: Development of short basalt fiber reinforced polylactide composites and their feasible evaluation for 3D printing applications. Compos. Part B Eng. 164, 629–639 (2019)

    Google Scholar 

  39. Adin, H., Yıldız, B., Adin, M.S.: Numerical Investigation of Fatigue behaviors of non-patched and patched aluminum pipes. Eur. J. Tech. 11(1), 60–65 (2021)

    Google Scholar 

  40. Woern, A.L., Mccaslin, J.R., Pringle, A.M., Pearce, J.M.: RepRapable Recyclebot: open source 3-D printable extruder for converting plastic to 3-D printing filament. HardwareX 4, E00026 (2018)

    Google Scholar 

  41. Roshchupkin, S.I., Golovin, V.I., Kolesov, A.G., Tarakhovskiy, A.Y.: Extruder for the production of metal-polymer filament for additive technologies. Mater. Sci. Eng. 971, 1–6 (2020)

    Google Scholar 

  42. Shaik, Y.P., Schuster, J., Shaik, A.: A scientific review on various pellet extruders used in 3D printing FDM processes. Ope Access Libr. J. 8, 1–19 (2021)

    Google Scholar 

  43. Priya, N., Kumar, S.N., Kumar, S.P., Pradeep, K.K.: Design and fabrication of filament extruder with spooler. Mater. Today Proc. 81(2), 221–223 (2023)

    Google Scholar 

  44. Isa, N.M.A., Sa, N., Ibrahim, M.I.: Verificaton of feed rate effects on filament extrusion for freeform fabrication. ARPN J. Eng. Appl. Sci. 11(10), 6556–6561 (2016)

    Google Scholar 

  45. Sasmitha, S.S., Uma, R.N.: A critical review on the application of bakelite as a partial replacement of fine and coarse aggregate. Int. J. Sci. Res. Dev. 4(11), 174–178 (2018)

    Google Scholar 

  46. Adin, H., Saglam, Z., Adin, M.S.: Numerical investigation of fatigue behavior of non-patched and patched aluminum/composite plates. Eur. Mech. Sci. 5(4), 168–176 (2021)

    Google Scholar 

  47. Martin, C.: Twin screw extruders as continuous mixers for thermal processing: a technical and historical perspective. AAPS Pharm. Sci. Tech. 17(1), 3–19 (2016)

    Google Scholar 

  48. Marinho, V.A.D., Cesario, L.V., Costa, A.R.M., Carvalho, L.H., Almeida, T.G., Canedo, E.L.: Heat transfer coefficient in internal mixers for different polymers and processing conditions. Chem. Eng. Res. Des. 1–20 (2019)

  49. Kumar, A., Kumar, P., Mittal, R.V., Gambhir, V.: Materials processed by additive manufacturing techniques. In: Advances in Additive Manufacturing: Artificial Intelligence, Nature-Inspired,and Biomanufacturing, pp. 217–233, Elesevier (2023)

  50. Litauszki, K., Petreny, R., Haramia, Z., Meszaros, L.: Combined effects of plasticizers and D-lactide content on the mechanical and morphological behavior of polylactic acid. Heliyon 9, 1–9 (2023)

    Google Scholar 

  51. Akindele, O.E., Kurian, T., Gopi, U.: Effect of sequence of mixing and internal mixer parameters on the viscosity of compounds for tire components. Int. J. Interdisp. Res. Innov. 7(1), 497–503 (2019)

    Google Scholar 

  52. Paul, U.A., Martins, O.A., Eddy, A.O.: The design and construction of a single screw extruder. J. Multidiscip. Eng. Sci. Technol. 6(7), 10340–10349 (2019)

    Google Scholar 

  53. Saliakas, S., Damilo, S., Karamitrou, M., Trompeta, A.F., Milickovic, T.K., Charitidis, C., Koumoulos, E.K.: Integrating exposure assessment and process hazard analysis: the nano-enabled 3D printing filament extrusion case. Polymers 15, 1–21 (2023)

    Google Scholar 

  54. Sadhya, S., Goyal, K.K., Singh, G., Singh, J., Akula, V.S.R.P.: Development of lab-scale extruder to produce feedstock filament for 3D printing using recycled thermoplastics. Mater. Tody. Proc. 80(1), 150–155 (2023)

    Google Scholar 

  55. Dave, H.K., Davim, J.P.: Fused Deposition Modeling Based 3D Printing. Springer, Berlin (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sathish Kumar Adapa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This work does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adapa, S.K., Jagadish Design and fabrication of internal mixer and filament extruder for extraction of hybrid filament composite for FDM applications. Int J Interact Des Manuf 18, 419–432 (2024). https://doi.org/10.1007/s12008-023-01521-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-023-01521-3

Keywords

Navigation