Skip to main content
Log in

Optimization of flux cored arc welding parameters to minimize the dilution percentage of AISI 316L stainless steel cladding on mild steel

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

The main objective of this work is to develop the cladding of austenitic stainless-steel wire on mild steel and to develop a mathematical model for predicting the dilution percentage. Flux cored arc welding (FCAW) was used to deposit the clad of AISI 316L on mild steel. The cladding was carried out by considering the five main process parameters of FCAW such as voltage, wire feed, welding speed and distance between nozzle and plate. The design expert software was utilized for making the experimental matrix. The Response Surface Methodology (RSM) was used to optimize the FCAW parameters for minimizing the dilution. The response surfaces were generated for analyzing the direct effect and interaction effect of FCAW parameters on dilution percentage. The mathematical model was established for predicting the dilution percentage in cladding and was validated using analysis of variance (ANOVA). The FCAW parameters were optimized using response surface methodology (RSM) to minimize the dilution percentage. The AISI 316L cladding deposited on mild steel using welding voltage of 31 V, wire feed rate of 10 m/min, welding speed of 0.25 m/min, distance between nozzle and plate of 18 mm and electrode angel of 14° showed lower dilution rate of 6.4%. The mathematical model accurately predicted the dilution percentage with less than 5% error. The prediction model was validated using ANOVA showing insignificant lack of fit. Based on the experimental analysis, the welding speed was found to be the most significant parameter that controls the dilution percentage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Deqing, W., Ziyuan, S., Ruobin, Qi.: Cladding of stainless steel on aluminum and carbon steel by interlayer diffusion bonding. Scripta Mater. 56, 369–372 (2007)

    Article  Google Scholar 

  2. JianyinChen, S.-H., Xue, L.: On the development of microstructures and residual stresses during laser cladding and post-heat treatments. J. Mater. Sci. 47(2), 779–792 (2012)

    Article  Google Scholar 

  3. Lailatula, P.H., Maleque, M.A.: Surface modification of duplex stainless steel with SiC preplacement using TIG torch cladding. Proc. Eng. 184, 737–742 (2017)

    Article  Google Scholar 

  4. Kapil, S., Legesse, F., Kulkarni, P., Joshi, P., Desai, A., Karunakaran, K.P.: Hybrid layered manufacturing using tungsten inert gas cladding. Prog. Addit. Manuf. 1(1), 79–91 (2016)

    Article  Google Scholar 

  5. Senthilkumar, B., Kannan, T.: Effect of flux cored arc welding process parameters on bead geometry in super duplex stainless steel claddings. Measurement 62, 127–136 (2015)

    Article  Google Scholar 

  6. Sowrirajan, M., Vijayan, S., Arulraj, M., Babu, N.V.: Effect of austenitic stainless steel weld clad layers on conduction heat transfer across the walls of pressure vessels. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 236(12), 6677–6687 (2022)

    Article  Google Scholar 

  7. Wang, Y., Li, X., Wang, X., Yan, H.: Fabrication of a thick copper-stainless steel clad plate for nuclear fusion equipment by explosive welding. Fusion Eng. Des. 137, 91–96 (2018)

    Article  Google Scholar 

  8. Missori, S., Murdolo, F., Sili, A.: Single-pass laser beam welding of clad steel plate. Weld J. 83(2), 65s–71s (2004)

    Google Scholar 

  9. Murugan, N., Parmer, R.S.: Stainless steel cladding deposited by automatic gas metal arc welding. Weld J. 76(10), 391s–402s (1997)

    Google Scholar 

  10. Benyounis, K.Y., Olabi, A.G.: Optimization of different welding processes usingstatistical and numerical approaches: a reference guide. Adva. Engg. Softw. 39, 483–496 (2008)

    Article  Google Scholar 

  11. Palani, P., Muruga, N.: Development of mathematical models for prediction of weld bead geometry in cladding by flux cored arc welding. Int. J. Adv. Manuf. Technol. 30, 669–676 (2006)

    Article  Google Scholar 

  12. Rajkumar, B., Murugan, N.: Prediction of weld bead geometry using artificial neural networks on 2205 duplex stainless steel. Eur. J. Sci. Res. 78, 85–92 (2012)

    Google Scholar 

  13. Khorram, A., SoleymaniYazdi, M.R., Ghoreishi, M., Moradi, M.: Using ANN approach to investigate the weld geometry of Ti6Al 4V titanium alloy. IACSIT Int. J. Eng. Tech. 2(5), 491–498 (2012)

    Article  Google Scholar 

  14. Ghosh, A., Mukherje, S., Chattopadhyaya, S., Sarker, P.K.: Weld bead parametric estimation of SAW process through neural network. Indian Weld. J. 40(4), 33–43 (2007)

    Article  Google Scholar 

  15. Gomes, J.H., Costa, S.C., Paiva, A.P., Balestrassi, P.P.: Mathematical modeling of weld bead geometry, quality, and productivity for stainless steel claddings deposited by FCAW. J. Mater. Eng. Perform. 21, 1862–1872 (2012)

    Article  Google Scholar 

  16. Ravikumar, S.M., Vijian, P.: Development of mathematical models for prediction of weld bead geometry of GTAW stainless steel. Appl. Mech. Mater. 867, 88–96 (2017)

    Article  Google Scholar 

  17. Karpagaraj, A., Rajesh Kumar, N., Thiyaneshwaran, N., Siva Shanmugam, N., Cheepu, M., Sarala, R.: Experimental and numerical studies on gas tungsten arc welding of Ti–6Al–4V tailor-welded blank. J. Braz. Soc. Mech. Sci. Eng. 42, 532 (2020)

    Article  Google Scholar 

  18. Lin, C., Su, T.L., Wu, K.: Effects of parameter optimization on microstructure and properties of GTAW clad welding on AISI 304L stainless steel using Inconel 52M. Int. J. Adv. Manuf. Technol. 79, 2057–2066 (2015)

    Article  Google Scholar 

  19. Singh, J., Thakur, L., Angra, S.: An investigation on the parameter optimization and abrasive wear behaviour of nanostructured WC-10Co-4Cr TIG weld cladding. Surf. Coat. Technol. 386, 125474 (2020)

    Article  Google Scholar 

  20. Robert Jayachandran, A., Murugan, N.: Investigations on the influence of surfacing process parameters over bead properties during stainless steel cladding. Mater. Manufact. Process. 27(1), 69–77 (2012)

    Article  Google Scholar 

  21. Nunes, M.M., Gomes, J.H.D.F., Brito, T.G., Renzetti, R.A.: Effect of flux cored arc welding process parameters on corrosion resistance of austenitic stainless steel claddings. Mater. Res. (2020). https://doi.org/10.1590/1980-5373-MR-2020-0356

    Article  Google Scholar 

  22. Balan, A.V., Shivasankaran, N., Magibalan, S.: Optimization of cladding parameters for resisting corrosion on low carbon steels using simulated annealing algorithm. Mater. Res. Express 5(4), 046527 (2018)

    Article  Google Scholar 

  23. Sonar, T., Balasubramanian, V., Malarvizhi, S., Venkateswaran, T., Sivakumar, D.: Multi-response mathematical modelling, optimization and prediction of weld bead geometry in gas tungsten constricted arc welding (GTCAW) of Inconel 718 alloy sheets for aero-engine components. Multisc. Multidiscip. Model. Exp. Des. 3, 201–226 (2020)

    Article  Google Scholar 

  24. Rajarajan, C., Sivaraj, P., Sonar, T., Raja, S., Mathiazhagan, N.: Resistance spot welding of advanced high strength steel for fabrication of thin-walled automotive structural frames. Forces Mech. 7, 100084 (2022)

    Article  Google Scholar 

  25. Sonar, T., Balasubramanian, V., Malarvizhi, S., Venkateswaran, T., Sivakumar, D.: Maximizing strength and corrosion resistance of InterPulsed TIG welded Superalloy 718 joints by RSM for aerospace applications. CIRP J. Manuf. Sci. Technol. 35, 474–493 (2021)

    Article  Google Scholar 

  26. Sonar, T., Balasubramanian, V., Malarvizhi, S., Venkateswaran, T., Sivakumar, D.: Development of 3-dimensional (3D) response surfaces to maximize yield strength and elongation of InterPulsed TIG welded thin high temperature alloy sheets for jet engine applications. CIRP J. Manuf. Sci. Technol. 31, 628–642 (2020)

    Article  Google Scholar 

  27. Dhamothara Kannan, T., Sivaraj, P., Balasubramanian, V., Sonar, T., Ivanov, M., Sathiya, S.: Unsymmetric rod to plate rotary friction welding of dissimilar martensitic stainless steel and low carbon steel for automotive applications–mathematical modeling and optimization. Int. J. Interact. Des. Manuf. (IJIDeM) (2023). https://doi.org/10.1007/s12008-022-01193-5

    Article  Google Scholar 

  28. Yao, M., Chen, X., Kong, F., et al.: Process optimization of laser hot-wire cladding with high-power direct diode laser via the response surface methodology. Int. J. Adv. Manuf. Technol. 120, 8089–8103 (2022)

    Article  Google Scholar 

  29. Kannan, T., Murugan, N.: Sensitivity analysis of flux cored arc cladding parameters using response surface methodology. J. Manuf. Sci. Prod. 7(3–4), 171–186 (2006)

    Google Scholar 

  30. Lin, J.Y., Han, B., Han, X.R., Wang, H., Cui, W.H.: Process parameter optimization of a laser clad Fe-based alloy using response surface methodology (RSM). Lasers Eng. (Old City Publishing) 51, 279–298 (2021)

    Google Scholar 

  31. Yong, Z., Chang, L., Jiang, S., Xie, D., Xing, F., Shen, H., Shen, L., Tian, Z.: Parameter optimization of T800 coating fabricated by EHLA based on response surface methodology. Opt. Laser Technol. 158, 108837 (2023)

    Article  Google Scholar 

  32. Rajalingam, P., Rajakumar, S., Balasubramanian, V., Sonar, T., Kavitha, S.: Optimization of laser beam spot welding (LBSW) parameters to maximize the load bearing capability of AHS-DP1000 steel lap joints. Int. J. Interact. Des. Manuf. (IJIDeM) (2023). https://doi.org/10.1007/s12008-023-01351-3

    Article  Google Scholar 

  33. Thirumalaikkannan, D.K., Paramasivam, S., Visvalingam, B., Sonar, T., Sivaraj, S.: Parametric mathematical modeling and 3D response surface analysis for rod to plate friction welding of AISI 1020 steel/AISI 1018 steel. Multidiscip. Model. Mater. Struct. 19(1), 54–70 (2023)

    Article  Google Scholar 

  34. Rajalingam, P., Rajakumar, S., Balasubramanian, V., Sonar, T., Kavitha, S.: Tensile shear fracture load bearing capability, softening of HAZ and microstructural characteristics of resistance spot welded DP-1000 steel joints. Mater. Test. 65(1), 94–110 (2023)

    Article  Google Scholar 

  35. Prabhuraj, P., Rajakumar, S., Balasubramanian, V., Sonar, T., Ivanov, M., Elil Raja, D.: Effect of pH value, chloride ion concentration and salt spraying time on salt fog corrosion resistance of friction stir welded AA7075-T651 alloy joints. Int. J. Interact. Des. Manuf. (IJIDeM) (2023). https://doi.org/10.1007/s12008-023-01415-4

    Article  Google Scholar 

  36. Sowrirajan, M., Vijayan, S., Arulraj, M.: Application of regression models in multi-objective optimization of FCAW process variables on volume of austenitic stainless-steel clad layers. J. Chin. Soc. Mech. Eng. 42(2), 227–234 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Balasubramanian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balasubramanian, K., Vikram, R., Sambath, S. et al. Optimization of flux cored arc welding parameters to minimize the dilution percentage of AISI 316L stainless steel cladding on mild steel. Int J Interact Des Manuf (2023). https://doi.org/10.1007/s12008-023-01487-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12008-023-01487-2

Keywords

Navigation