Skip to main content
Log in

Effective machining parameter selection through fuzzy AHP-TOPSIS for 3D finish milling of Ti6Al4V

  • Original Article
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

Ti6Al4V is a Hard-to-Shear material in the Automobile, Aerospace, Marine, and Biomedical implant industries. The difficulties in the shearing arise from metallurgical phase alterations under insufficient lubrication and cooling during Ti6Al4V machining. This article wisely investigated 3D finish milling using different Computer-Aided Machining (CAM) strategies with cooling approaches followed by Taguchi Design of Experiments. The performance was evaluated in terms of Surface integrity, Flank, and Crater wear. The Fuzzy Analytic Hierarchy Process establishes the weights by extent analysis, and furthermore, Technique for Order of Preference by Similarity to Ideal Solution decides the optimum levels of process parameters. The optimized process parameters like Cutting speed (40 m/min), Axial Depth of Cut (0.3 mm), and Feed rate (101.92 mm/min) with Graphene Oxide Nanoparticles + 15% concentrated wet lubrication (Hybrid Flood Coolant) are applied through the Streamline CAM strategy with PVD-TiAlN coated cutting tool. These yielded process parameters exhibit excellent performance in finish milling than the other combinations of parameters. Analysis of Variance evaluates the influences of process parameters on experimental performances. Finally, optimized process parameters were applied to 3D milling of Ti6Al4V bracket through Streamline CAM strategy, which sequels the lower Crater and Flank wear with 0.132 microns surface integrity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

Ti6Al4V:

Titanium alloy grade 5

W′:

Unnormalized weight vector

GON:

Graphene oxide nanoparticles

dˊA i :

Degree of possibility

BCC:

Body-centered cubic

MQL:

Minimum quantity lubrication

3D:

Three dimensional

DOC:

Depth of cut

CAM:

Computer-aided machining

DOE:

Design of experiment

AHP:

Analytic hierarchy process

HCP:

Hexagonal closed packed

HCPPVD:

Physical vapor deposition

LCO2/LCO2 :

Liquid carbon dioxide

CVD:

Chemical vapor deposition

LN2:

Liquid nitrogen

TOPSIS:

Technique for order performance by similarity to ideal solution

Si :

Synthetic extent

CNC:

Computerized numerical control

MRR:

Material removal rate

K:

Convex fuzzy number

W:

Normalized weight vector

VB :

Flank wear width

KB :

Crater wear width

Expon.:

Exponential trend line

Ra:

Average surface roughness value

Avg.:

Average

References

  1. Arrazola, P.-J., Garay, A., Iriarte, L.-M., Armendia, M., Marya, S., Le Maître, F.: Machinability of titanium alloys (Ti6Al4V and Ti555.3). J. Mater. Process. Technol. 209(5), 2223–2230 (2009). https://doi.org/10.1016/j.jmatprotec.2008.06.020

    Article  Google Scholar 

  2. Leigh, E., Tlusty, J., Schueller, J., Smith, S.: Advanced machining techniques on titanium rotor parts. Am. Helicopter Soc. In: 56th Annual forum proceedings-American helicopter society, Virginia Beach, Virginia. (pp. 1–20) (2000)

  3. Veiga, C., Davim, J.P., Loureiro, A.J.R.: Review on machinability of titanium alloys: the process perspective. Rev. Adv. Mater. Sci. 34(2), 148–164 (2013)

    Google Scholar 

  4. Polishetty, A., Goldberg, M., Littlefair, G., Puttaraju, M., Patil, P., Kalra, A.: A preliminary assessment of machinability of titanium alloy Ti 6Al 4V during thin wall machining using trochoidal milling. Procedia Eng. 97(December), 357–364 (2014). https://doi.org/10.1016/j.proeng.2014.12.259

    Article  Google Scholar 

  5. Pramanik, A., Littlefair, G.: Machining of titanium alloy (Ti-6Al-4V)-theory to application. Mach. Sci. Technol. 19(1), 1–49 (2015). https://doi.org/10.1080/10910344.2014.991031

    Article  Google Scholar 

  6. Pervaiz, S., Rashid, A., Deiab, I., Nicolescu, M.: Influence of tool materials on machinability of titanium- and nickel-based alloys: a review. Mater. Manuf. Process. 29(3), 219–252 (2014). https://doi.org/10.1080/10426914.2014.880460

    Article  Google Scholar 

  7. Ramesh, S., Karunamoorthy, L., Senthilkumar, V.S., Palanikumar, K.: Experimental study on machining of titanium alloy (Ti64) by CVD and PVD coated carbide inserts. Int. J. Manuf. Technol. Manag. 17(4), 373–385 (2009). https://doi.org/10.1504/IJMTM.2009.023954

    Article  Google Scholar 

  8. Roy, S., Kumar, R., Sahoo, A.K., Das, R.K.: A brief review on machining of Ti-6Al-4V under different cooling environments. IOP Conf. Ser. Mater. Sci. Eng. 455(1), 1–9 (2018). https://doi.org/10.1088/1757-899X/455/1/012101

    Article  Google Scholar 

  9. Xu, J., Rong, B., Zhang, H.Z., Wang, D.S., Li, L.: Investigation of cutting force in high feed milling of Ti6Al4V. Mater. Sci. Forum. 770, 106–109 (2014). https://doi.org/10.4028/www.scientific.net/MSF.770.106

    Article  Google Scholar 

  10. Altaf, M., Prakash Dwivedi, S., Shamsh Kanwar, R., Ahmad Siddiqui, I., Sagar, P., Ahmad, S.: Machining characteristics of titanium Ti-6Al-4V, inconel 718 and tool steel-A critical review. IOP Conf. Ser. Mater. Sci. Eng. 691(1), 1–4 (2019). https://doi.org/10.1088/1757-899X/691/1/012052

    Article  Google Scholar 

  11. Paulo Davim, J. (ed.): Machining of titanium alloys. Springer, Berlin (2014)

    Google Scholar 

  12. Mishra, S.K., Ghosh, S., Aravindan, S.: Machining performance evaluation of Ti6Al4V alloy with laser textured tools under MQL and nano-MQL environments. J. Manuf. Process. 53, 174–189 (2020). https://doi.org/10.1016/j.jmapro.2020.02.014

    Article  Google Scholar 

  13. Sun, S., Brandt, M., Dargusch, M.S.: Effect of tool wear on chip formation during dry machining of Ti-6Al-4V alloy, part 1: effect of gradual tool wear evolution. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 231(9), 1559–1574 (2017). https://doi.org/10.1177/0954405415599956

    Article  Google Scholar 

  14. Shyha, I., Gariani, S., El-Sayed, M., Huo, D.: Analysis of microstructure and chip formation when machining Ti-6Al-4V. Metals 8(3), 185 (2018). https://doi.org/10.3390/met8030185

    Article  Google Scholar 

  15. Liu, G., Shah, S., Özel, T.: Material ductile failure-based finite element simulations of chip serration in orthogonal cutting of titanium alloy Ti-6Al-4V. J. Manuf. Sci. Eng. Trans. ASME. 141(4), 1–24 (2019). https://doi.org/10.1115/1.4042788

    Article  Google Scholar 

  16. Zang, J., Zhao, J., Li, A., Pang, J.: Serrated chip formation mechanism analysis for machining of titanium alloy Ti-6Al-4V based on thermal property. Int. J. Adv. Manuf. Technol. 98(1–4), 119–127 (2018). https://doi.org/10.1007/s00170-017-0451-6

    Article  Google Scholar 

  17. Çelik, Y.H., Karabiyik, A.: Effect of cutting parameters on machining surface and cutting tool in milling of Ti-6Al-4V alloy. Indian J. Eng. Mater. Sci. 23(5), 349–356 (2016)

    Google Scholar 

  18. Patil, A.S., Sunnapwar, V.K., Bhole, K.S., More, Y.S.: Experimental investigation and fuzzy TOPSIS optimisation of Ti6Al4V finish milling. Adv. Mater. Process. Technol. 7(2), 1–24 (2021). https://doi.org/10.1080/2374068X.2021.1971002

    Article  Google Scholar 

  19. Wang, F., Zhao, J., Li, A., Zhao, J.: Experimental study on cutting forces and surface integrity in high-speed side milling of Ti-6Al-4V titanium alloy. Mach. Sci. Technol. 18(3), 448–463 (2014). https://doi.org/10.1080/10910344.2014.926690

    Article  Google Scholar 

  20. Raghavendra, S., Sathyanarayana, P.S., SelvaKumar, S., Vs, T., Kn, M.: High speed machining of titanium Ti6Al4V alloy components: study and optimisation of cutting parameters using RSM. Adv. Mater. Process. Technol. (2020). https://doi.org/10.1080/2374068X.2020.1806684

    Article  Google Scholar 

  21. Ezugwu, E.O.: High speed machining of aero-engine alloys. J. Brazilian Soc. Mech. Sci. Eng. 26(1), 1–11 (2004). https://doi.org/10.1590/S1678-58782004000100001

    Article  Google Scholar 

  22. Pramanik, A.: Problems and solutions in machining of titanium alloys. Int. J. Adv. Manuf. Technol. 70(5–8), 919–928 (2014). https://doi.org/10.1007/s00170-013-5326-x

    Article  Google Scholar 

  23. Gupta, K., Laubscher, R.F.: Sustainable machining of titanium alloys: a critical review. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 231(14), 2543–2560 (2016). https://doi.org/10.1177/0954405416634278

    Article  Google Scholar 

  24. Sharma, S., Meena, A.: Microstructure attributes and tool wear mechanisms during high-speed machining of Ti-6Al-4V. J. Manuf. Process. 50, 345–365 (2020). https://doi.org/10.1016/j.jmapro.2019.12.029

    Article  Google Scholar 

  25. Hassanpour, H., Sadeghi, M.H., Rezaei, H., Rasti, A.: Experimental study of cutting force, microhardness, surface roughness, and burr size on micromilling of Ti6Al4V in minimum quantity lubrication. Mater. Manuf. Process. 31(13), 1654–1662 (2016). https://doi.org/10.1080/10426914.2015.1117629

    Article  Google Scholar 

  26. Gelfi, M., Attanasio, A., Ceretti, E., Garbellini, A., Pola, A.: Micromilling of lamellar Ti6Al4V: cutting force analysis. Mater. Manuf. Process. 31(7), 919–925 (2016). https://doi.org/10.1080/10426914.2015.1059447

    Article  Google Scholar 

  27. Poondla, N., Srivatsan, T.S., Patnaik, A., Petraroli, M.: A study of the microstructure and hardness of two titanium alloys: commercially pure and Ti-6Al-4V. J. Alloys Compd. 486(1–2), 162–167 (2009). https://doi.org/10.1016/j.jallcom.2009.06.172

    Article  Google Scholar 

  28. Ahmed, T., Rack, H.J.: Phase transformations during cooling in α + β titanium alloys. Mater. Sci. Eng. A. 243(1–2), 206–211 (1998). https://doi.org/10.1016/s0921-5093(97)00802-2

    Article  Google Scholar 

  29. Vigraman, T., Ravindran, D., Narayanasamy, R.: Effect of phase transformation and intermetallic compounds on the microstructure and tensile strength properties of diffusion-bonded joints between Ti–6Al–4V and AISI 304L. Mater. Des. 36, 714–727 (2012). https://doi.org/10.1016/j.matdes.2011.12.024

    Article  Google Scholar 

  30. Motyka, M., Kubiak, K., Sieniawski, J., Ziaja, W.: Phase transformations and characterization of α + β titanium alloys. Compr. Mater. Process. 2(May), 7–36 (2014). https://doi.org/10.1016/B978-0-08-096532-1.00202-8

    Article  Google Scholar 

  31. Armendia, M., Osborne, P., Garay, A., Belloso, J., Turner, S., Arrazola, P.-J.: Influence of heat treatment on the machinability of titanium alloys. Mater. Manuf. Process. 27(4), 457–461 (2012). https://doi.org/10.1080/10426914.2011.585499

    Article  Google Scholar 

  32. Khanna, N., Davim, J.P.: Design-of-experiments application in machining titanium alloys for aerospace structural components. Meas. J. Int. Meas. Confed. 61, 280–290 (2015). https://doi.org/10.1016/j.measurement.2014.10.059

    Article  Google Scholar 

  33. Hashmi, K.H., Zakria, G., Raza, M.B., Khalil, S.: Optimization of process parameters for high speed machining of Ti-6Al-4V using response surface methodology. Int. J. Adv. Manuf. Technol. 85(5–8), 1847–1856 (2016). https://doi.org/10.1007/s00170-015-8057-3

    Article  Google Scholar 

  34. Amrita, M., Kamesh, B., Sree, K.L.S.: Multi-response optimization in machining Ti6Al4V using graphene dispersed emulsifier oil. Mater. Today Proc. 62, 1179–1188 (2022). https://doi.org/10.1016/j.matpr.2022.04.352

    Article  Google Scholar 

  35. Kumar Khare, S., Singh Phull, G.: Analysis and optimization of machining parameters of Ti-6Al-4 V under high-speed machining. Mater. Today Proc. (2022). https://doi.org/10.1016/j.matpr.2022.03.255

    Article  Google Scholar 

  36. Saini, A., Pabla, B.S., Dhami, S.S.: Developments in cutting tool technology in improving machinability of Ti6Al4V alloy: a review. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 230(11), 1977–1989 (2016)

    Article  Google Scholar 

  37. Noor Danish, N.H.D., Musfirah, A.H.: Optimization of cutting parameter for machining Ti-6Al-4V titanium alloy. J. Modern Manuf. Syst. Technol. 6(1), 53–57 (2022). https://doi.org/10.15282/jmmst.v6i1.7465

    Article  Google Scholar 

  38. Outeiro, J., Cheng, W., Chinesta, F., Ammar, A.: Modelling and optimization of machining of Ti-6Al-4V titanium alloy using machine learning and design of experiments methods. J. Manuf. Mater. Process. 6(3), 1–22 (2022). https://doi.org/10.3390/jmmp6030058

    Article  Google Scholar 

  39. Nimel Sworna Ross, K., Ganesh, M.: Performance analysis of machining Ti–6Al–4V under cryogenic CO2 using PVD-TiN coated tool. J. Fail. Anal. Prev. 19(3), 821–831 (2019). https://doi.org/10.1007/s11668-019-00667-1

    Article  Google Scholar 

  40. Ross, N.S., Sheeba, P.T., Jebaraj, M., Stephen, H.: Milling performance assessment of Ti-6Al-4V under CO2 cooling utilizing coated AlCrN/TiAlN insert. Mater. Manuf. Process. 37(3), 327–341 (2022). https://doi.org/10.1080/10426914.2021.2001510

    Article  Google Scholar 

  41. Iqbal, A., Suhaimi, H., Zhao, W., Jamil, M., Nauman, M.M., He, N., Zaini, J.: Sustainable milling of Ti-6Al-4V: investigating the effects of milling orientation, cutter′s helix angle, and type of cryogenic coolant. Metals (Basel) 10(2), 258 (2020). https://doi.org/10.3390/met10020258

    Article  Google Scholar 

  42. Pimenov, D.Y., Mia, M., Gupta, M.K., Machado, A.R., Tomaz, Í.V., Sarikaya, M., Wojciechowski, S., Mikolajczyk, T., Kaplonek, W.: Improvement of machinability of Ti and its alloys using cooling-lubrication techniques: a review and future prospect. J. Mater. Res. Technol. 11, 719–753 (2021). https://doi.org/10.1016/j.jmrt.2021.01.031

    Article  Google Scholar 

  43. Park, K.-H.H., Yang, G.-D.D., Suhaimi, M.A., Lee, D.Y., Kim, T.-G.G., Kim, D.-W.W., Lee, S.-W.W.: The effect of cryogenic cooling and minimum quantity lubrication on end milling of titanium alloy Ti-6Al-4V. J. Mech. Sci. Technol. 29(12), 5121–5126 (2015). https://doi.org/10.1007/s12206-015-1110-1

    Article  Google Scholar 

  44. Albertelli, P., Mussi, V., Strano, M., Monno, M.: Experimental investigation of the effects of cryogenic cooling on tool life in Ti6Al4V milling. Int. J. Adv. Manuf. Technol. 117(7–8), 2149–2161 (2021). https://doi.org/10.1007/s00170-021-07161-9

    Article  Google Scholar 

  45. Suhaimi, M.A., Yang, G.-D., Park, K.-H., Hisam, M.J., Sharif, S., Kim, D.-W.: Effect of cryogenic machining for titanium alloy based on indirect, internal and external spray system. Procedia Manuf. 17, 158–165 (2018). https://doi.org/10.1016/j.promfg.2018.10.031

    Article  Google Scholar 

  46. Tao, L., Kudaravalli, R., Georgiou, G.: Cryogenic machining through the spindle and tool for improved machining process performance and sustainability: Pt. I, system design. Procedia Manuf. 21, 266–272 (2018). https://doi.org/10.1016/j.promfg.2018.02.120

    Article  Google Scholar 

  47. Gupta, M.K., Song, Q., Liu, Z., Sarikaya, M., Jamil, M., Mia, M., Kushvaha, V., Singla, A.K., Li, Z.: Ecological, economical and technological perspectives based sustainability assessment in hybrid-cooling assisted machining of Ti-6Al-4 V alloy. Sustain. Mater. Technol. 26(e00218), 1–13 (2020). https://doi.org/10.1016/j.susmat.2020.e00218

    Article  Google Scholar 

  48. Damir, A., Shi, B., Attia, M.H.: Flow characteristics of optimized hybrid cryogenic-minimum quantity lubrication cooling in machining of aerospace materials. CIRP Ann. 68(1), 77–80 (2019). https://doi.org/10.1016/j.cirp.2019.04.047

    Article  Google Scholar 

  49. Jamil, M., Khan, A.M., Hegab, H., Gupta, M.K., Mia, M., He, N., Zhao, G., Song, Q., Liu, Z.: Milling of Ti–6Al–4V under hybrid Al2O3-MWCNT nanofluids considering energy consumption, surface quality, and tool wear: a sustainable machining. Int. J. Adv. Manuf. Technol. 107(9–10), 4141–4157 (2020). https://doi.org/10.1007/s00170-020-05296-9

    Article  Google Scholar 

  50. Davis, R., Singh, A., Sabino, R.M., Pereira, R.B.D., Popat, K., Soares, P., Jackson, M.J.: Performance Investigation of Cryo-treated End Mill on the Mechanical and in vitro behavior of Hybrid-lubri-coolant-milled Ti-6Al-4V alloy. J. Manuf. Process. 71(April), 472–488 (2021). https://doi.org/10.1016/j.jmapro.2021.09.052

    Article  Google Scholar 

  51. Li, G., Yi, S., Li, N., Pan, W., Wen, C., Ding, S.: Quantitative analysis of cooling and lubricating effects of graphene oxide nanofluids in machining titanium alloy Ti6Al4V. J. Mater. Process. Technol. 271, 584–598 (2019). https://doi.org/10.1016/j.jmatprotec.2019.04.035

    Article  Google Scholar 

  52. Dong, P.Q., Duc, T.M., Long, T.T.: Performance evaluation of MQCL hard milling of SKD 11 tool steel using MoS2 Nanofluid. Metals 9(6), 658 (2019). https://doi.org/10.3390/met9060658

    Article  Google Scholar 

  53. Aslantas, K., Çicek, A., Ucun, İ, Percin, M., Hopa, H.E.: Performance evaluation of a hybrid cooling–lubrication system in micro-milling of Ti6Al4V alloy. Procedia CIRP. 46(June), 492–495 (2016). https://doi.org/10.1016/j.procir.2016.04.037

    Article  Google Scholar 

  54. Zhou, C., Guo, X., Zhang, K., Cheng, L., Yongqiang, W.: The coupling effect of micro-groove textures and nanofluids on cutting performance of uncoated cemented carbide tools in milling Ti-6Al-4V. J. Mater. Process. Technol. 271, 36–45 (2019). https://doi.org/10.1016/j.jmatprotec.2019.03.021

    Article  Google Scholar 

  55. Kim, W.-Y., Senguttuvan, S., Kim, S.H., Lee, S.W., Kim, S.-M.: Numerical study of flow and thermal characteristics in titanium alloy milling with hybrid nanofluid minimum quantity lubrication and cryogenic nitrogen cooling. Int. J. Heat Mass Transf. 170(121005), 1–14 (2021). https://doi.org/10.1016/j.ijheatmasstransfer.2021.121005

    Article  Google Scholar 

  56. Jarolmasjed, S., Davoodi, B., Pourebrahim Alamdari, B.: Influence of milling toolpaths in machining of the turbine blade. Aircr. Eng. Aerosp. Technol. 91(10), 1327–1339 (2019). https://doi.org/10.1108/AEAT-12-2018-0316

    Article  Google Scholar 

  57. Monreal, M., Rodriguez, C.A.: Influence of tool path strategy on the cycle time of high-speed milling. CAD Comput. Aided Des. 35(4), 395–401 (2003). https://doi.org/10.1016/S0010-4485(02)00060-X

    Article  Google Scholar 

  58. Bieterman, M.B., Sandstrom, D.R.: A curvilinear tool-path method for pocket machining. ASME Int. Mech. Eng. Congr. Expo. Proc. (2016). https://doi.org/10.1115/IMECE2002-33611

    Article  Google Scholar 

  59. Toh, C.K.: A study of the effects of cutter path strategies and orientations in milling. J. Mater. Process. Technol. 152(3), 346–356 (2004). https://doi.org/10.1016/j.jmatprotec.2004.04.382

    Article  Google Scholar 

  60. Shajari, S., Sadeghi, M.H., Hassanpour, H.: The influence of tool path strategies on cutting force and surface texture during ball end milling of low curvature convex surfaces. Sci. World J. 2014, 1–14 (2014). https://doi.org/10.1155/2014/374526

    Article  Google Scholar 

  61. Koklu, U., Basmaci, G.: Evaluation of tool path strategy and cooling condition effects on the cutting force and surface quality in micromilling operations. Metals 7(10), 426 (2017). https://doi.org/10.3390/met7100426

    Article  Google Scholar 

  62. Magalhães, LCs., Ferreira, J.C.E.: Assessment of tool path strategies for milling complex surfaces in hardened H13 steel. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 233(3), 834–849 (2019). https://doi.org/10.1177/0954405418755824

    Article  Google Scholar 

  63. Tunc, L.T., Stoddart, D.: Tool path pattern and feed direction selection in robotic milling for increased chatter-free material removal rate. Int. J. Adv. Manuf. Technol. 89(9–12), 2907–2918 (2017). https://doi.org/10.1007/s00170-016-9896-2

    Article  Google Scholar 

  64. Peters, C.L. and M.: Titanium and Titanium Alloys Edited by. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2003). http://www-eng.lbl.gov/~shuman/NEXT/MATERIALS&COMPONENTS/Pressure_vessels/edited_by_C._Leyens_and_M._Peters.-Titanium_and_Titanium_Alloys-Wiley-VCH(2001).pdf

  65. Masood, I., Jahanzaib, M., Haider, A.: Tool wear and cost evaluation of face milling grade 5 titanium alloy for sustainable machining. Adv Prod Eng Manag 11(3), 239–250 (2016). https://doi.org/10.14743/apem2016.3.224

    Article  Google Scholar 

  66. Su, Y., He, N., Li, L., Li, X.L.: An experimental investigation of effects of cooling/lubrication conditions on tool wear in high-speed end milling of Ti-6Al-4V. Wear 261(7–8), 760–766 (2006). https://doi.org/10.1016/j.wear.2006.01.013

    Article  Google Scholar 

  67. Bermingham, M.J., Palanisamy, S., Kent, D., Dargusch, M.S.: A comparison of cryogenic and high pressure emulsion cooling technologies on tool life and chip morphology in Ti-6Al-4V cutting. J. Mater. Process. Technol. 212(4), 752–765 (2012). https://doi.org/10.1016/j.jmatprotec.2011.10.027

    Article  Google Scholar 

  68. Debnath, S., Reddy, M.M., Yi, Q.S.: Environmental friendly cutting fluids and cooling techniques in machining: a review. J. Clean. Prod. 83, 33–47 (2014). https://doi.org/10.1016/j.jclepro.2014.07.071

    Article  Google Scholar 

  69. Shokrani, A., Dhokia, V., Newman, S.T.: Investigation of the effects of cryogenic machining on surface integrity in CNC end milling of Ti-6Al-4V titanium alloy. J. Manuf. Process. 21(December), 172–179 (2016). https://doi.org/10.1016/j.jmapro.2015.12.002

    Article  Google Scholar 

  70. Foltz, G.: Titanium & Metalworking Fluids, Cincinnati, Ohio 45209 (2009). https://www.cimcool.com/wp-content/uploads/manage-msds-pif/pif/CIMTECH%20310.pdf

  71. Bağci, E.: Experimental investigation of effect of tool path strategies and cutting parameters using acoustic signal in complex surface machining. J. Vibroengineering 19(7), 5571–5588 (2017). https://doi.org/10.21595/jve.2017.18475

    Article  Google Scholar 

  72. Gök, A., Gök, K., Bilgin, M.B., Alkan, M.A.: Effects of cutting parameters and tool-path strategies on tool acceleration in ball-end milling. Mater. Tehnol. 51(6), 957–965 (2017). https://doi.org/10.17222/mit.2017.039

    Article  Google Scholar 

  73. Shi, K., Liu, N., Wang, S., Ren, J.: Effect of tool path on cutting force in end milling. Int. J. Adv. Manuf. Technol. 104(9–12), 4289–4300 (2019). https://doi.org/10.1007/s00170-019-04120-3

    Article  Google Scholar 

  74. Chang, D.Y.: Applications of the extent analysis method on fuzzy AHP. Eur. J. Oper. Res. 95(3), 649–655 (1996). https://doi.org/10.1016/0377-2217(95)00300-2

    Article  MATH  Google Scholar 

  75. ROSS, T.J.: Fuzzy logic with engineering application. Wiley, Hoboken (2010)

    Book  Google Scholar 

  76. Balioti, V., Tzimopoulos, C., Evangelides, C.: Multi-criteria decision making using TOPSIS method under fuzzy environment. Appl. Spil. Sel. Proc. 2(11), 637 (2018). https://doi.org/10.3390/proceedings2110637

    Article  Google Scholar 

  77. Chen, C.-T.: Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy Sets Syst. 114(1), 1–9 (2000). https://doi.org/10.1016/S0165-0114(97)00377-1

    Article  MATH  Google Scholar 

  78. Manivannan, R., Kumar, M.P.: Multi-attribute decision-making of cryogenically cooled micro-EDM drilling process parameters using TOPSIS method. Mater. Manuf. Process. 32(2), 209–215 (2017). https://doi.org/10.1080/10426914.2016.1176182

    Article  Google Scholar 

  79. Menezes, J., Rubeo, M.A., Kiran, K., Honeycutt, A., Schmitz, T.L.: Productivity progression with tool wear in titanium milling. Procedia Manuf. 5, 427–441 (2016). https://doi.org/10.1016/j.promfg.2016.08.036

    Article  Google Scholar 

  80. Sivalingam, V., Sun, J., Selvam, B., Murugasen, P.K., Yang, B., Waqar, S.: Experimental investigation of tool wear in cryogenically treated insert during end milling of hard Ti alloy. J. Brazilian Soc. Mech. Sci. Eng. 41(2), 110 (2019). https://doi.org/10.1007/s40430-019-1612-3

    Article  Google Scholar 

  81. Dongre, G., Shaikh, J., Dhakad, L., Rajurkar, A., Gaigole, P.: Analysis for machining of Ti6Al4V alloy using coated and non-coated carbide tools. Proc. Int. Conf. Commun. Signal Process, 2016 (ICCASP 2016). 137, 134–141 (2017). https://doi.org/10.2991/iccasp-16.2017.22

    Article  Google Scholar 

  82. Andriya, N., Venkateswara Rao, P., Ghosh, S., Engineering, M., Delhi, T., Delhi, N.: Machining study of Ti-6Al-4V using PVD coated TiAlN inserts. Asian Rev. Mech. Eng. 1(2), 34–40 (2012)

    Google Scholar 

  83. Khatri, A., Jahan, M.P.: Investigating tool wear mechanisms in machining of Ti-6Al-4V in flood coolant, dry and MQL conditions. Procedia Manuf. 26, 434–445 (2018). https://doi.org/10.1016/j.promfg.2018.07.051

    Article  Google Scholar 

  84. Viktor P.A., Davim, J.P.: Tools (geometry and material) and tool wear. In: Davim, J.P. (ed.) Machining: fundamentals and recent advances, pp. 29–57. Springer, London (2008)

    Google Scholar 

  85. Sartori, S., Ghiotti, A., Bruschi, S.: Hybrid lubricating/cooling strategies to reduce the tool wear in finishing turning of difficult-to-cut alloys. Wear 376–377, 107–114 (2017). https://doi.org/10.1016/j.wear.2016.12.047

    Article  Google Scholar 

  86. Marinac, D.: Tool path strategies for high speed machining., http://flagship.luc.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=ofs&AN=500640481&site=ehost-live, (2000)

  87. Joshi, S.: Dimensional inequalities in chip segments of titanium alloys. Eng. Sci. Technol. an Int. J. 21(2), 238–244 (2018). https://doi.org/10.1016/j.jestch.2018.03.006

    Article  Google Scholar 

  88. Sangwan, K.S., Saxena, S., Kant, G.: Optimization of machining parameters to minimize surface roughness using integrated ANN-GA approach. Procedia CIRP. 29, 305–310 (2015). https://doi.org/10.1016/j.procir.2015.02.002

    Article  Google Scholar 

  89. Du, S., Chen, M., Xie, L., Zhu, Z., Wang, X.: Optimization of process parameters in the high-speed milling of titanium alloy TB17 for surface integrity by the Taguchi-Grey relational analysis method. Adv. Mech. Eng. 8(10), 1–12 (2016). https://doi.org/10.1177/1687814016671442

    Article  Google Scholar 

  90. Qehaja, N., Jakupi, K., Bunjaku, A., Bruçi, M., Osmani, H.: Effect of machining parameters and machining time on surface roughness in dry turning process. Procedia Eng. 100(January), 135–140 (2015). https://doi.org/10.1016/j.proeng.2015.01.351

    Article  Google Scholar 

  91. Abdullah, R.I.R., Redzuwan, B.I., Aziz, M.S.A., Kasim, M.S.: Comparative study of tool wear in milling titanium alloy (Ti-6Al-4V) using PVD and CVD coated cutting tool. Ind. Lub. Tribol. 69(3), 363–370 (2017). https://doi.org/10.1108/ILT-09-2016-0202

    Article  Google Scholar 

  92. Sadik, M.I., Isakson, S.: The role of PVD coating and coolant nature in wear development and tool performance in cryogenic and wet milling of Ti-6Al-4V. Wear 386–387, 204–210 (2017). https://doi.org/10.1016/j.wear.2017.02.049

    Article  Google Scholar 

  93. Singh, H., Sharma, V.S., Singh, S., Dogra, M.: Nanofluids assisted environmental friendly lubricating strategies for the surface grinding of titanium alloy: Ti6Al4V-ELI. J. Manuf. Process. 39, 241–249 (2019). https://doi.org/10.1016/j.jmapro.2019.02.004

    Article  Google Scholar 

  94. Smith, P.J., Chu, B., Singh, E., Chow, P., Samuel, J., Koratkar, N.: Graphene oxide colloidal suspensions mitigate carbon diffusion during diamond turning of steel. J. Manuf. Process. 17, 41–47 (2015). https://doi.org/10.1016/j.jmapro.2014.10.007

    Article  Google Scholar 

  95. Singh, R.K., Sharma, A.K., Mandal, V., Gaurav, K., Nag, A., Kumar, A., Dixit, A.R., Mandal, A., Kumar Das, A.: Influence of graphene-based nanofluid with minimum quantity lubrication on surface roughness and cutting temperature in turning operation. Mater. Today Proc. 5(11), 24578–24586 (2018). https://doi.org/10.1016/j.matpr.2018.10.255

    Article  Google Scholar 

  96. Palani, I.A., Sathiya, P., Palanisamy, D. (eds.): Recent advances in materials and modern manufacturing: select proceedings of ICAMMM 2021. Springer Nature Singapore, Singapore (2022)

    Google Scholar 

  97. Ramesh Raju, N., Manikandan, D., Palanisamy, D., Arulkirubakaran, J.S., Binoj, P., Thejasree, C.A.: A review of challenges and opportunities in additive manufacturing. In: Palani, I.A., Sathiya, P., Palanisamy, D. (eds.) Recent advances in materials and modern manufacturing: select proceedings of ICAMMM 2021, pp. 23–29. Springer Nature Singapore, Singapore (2022). https://doi.org/10.1007/978-981-19-0244-4_3

    Chapter  Google Scholar 

  98. Thirugnanasambantham, K.G., Agnal Francis, R., Ramesh, A. M., Reddy, M.K.: Investigation of erosion mechanisms on IN-718 based turbine blades under water jet conditions. Int. J. Interact. Des. Manuf. (IJIDeM) (2022). https://doi.org/10.1007/s12008-022-00910-4

    Article  Google Scholar 

Download references

Acknowledgements

Authors would acknowledge the kind support of Supra Techno Services, Authorized Distributors for Seco Tools India Ltd. Pune and also thanks to the Department of Mechanical Engineering, Institute of Engineering, Bhujbal Knowledge City, Adgaon, Nashik, to carry out this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit S. Patil.

Ethics declarations

Conflict of interest

The author(s) declare that they have not known competing for any financial interests or personal relationships that could have appeared to influence the work reported in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, A.S., Sunnapwar, V.K., Bhole, K.S. et al. Effective machining parameter selection through fuzzy AHP-TOPSIS for 3D finish milling of Ti6Al4V. Int J Interact Des Manuf (2022). https://doi.org/10.1007/s12008-022-00993-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12008-022-00993-z

Keywords

Navigation