Skip to main content
Log in

Evaluation of hydrophobic/hydrophilic and antireflective coatings for photovoltaic panels

  • Review Article
  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Photovoltaic modules have emerged as a crucial technology for generating electricity from renewable sources to advance toward achieving neutrality in carbon emissions. Nevertheless, the efficacy and overall effectiveness of solar PV cells are significantly affected by various aspects, including ecological conditions and operation and maintenance practices. These factors directly impact the outcome, energy utilization efficacy, productivity, and lifespan of the PV cells, ultimately influencing the economic aspects of power generation. A highly effective method for mitigating ecological factors is applying a self-cleaning and antireflective coating, which utilizes micro–nano structures and surface wettability to facilitate cleaning and enhance light transmission. This study investigates the influence of ecological and operational factors on solar PV cell effectiveness. Further, a brief summary of the basic principles and development of self-cleaning and antireflective coating is presented by examining recent research. The review reveals that soiling, humidity, and temperature negatively influence the performance of PV modules. In humid conditions, dust deposition leads to the formation of adhesive mud on PV cells, resulting in a reduction of power generation by as high as ~ 70%. In addition, it is also suggested that the application of self-cleaning and antireflection coating on PV modules enhances its efficiency by ~ 11% compared to uncoated modules. Lastly, a comparative analysis of hydrophobic and hydrophilic coatings, various coating methods, and their durability and life expectancy are summarized, and a few effective processes are highlighted for their promising research outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12 
Fig. 13
Fig.14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Abbreviations

SC:

Self-cleaning

AR:

Antireflective

PSC:

Perovskite solar cell

DSSC:

Dye-sensitized solar cell

CZTSSC:

Copper zinc tin sulfide solar cell

OSC:

Organic solar cell

QDSC:

Quantum dot solar cell

CIGS:

Copper indium gallium selenide solar cell

PFDTES:

1H,1H,2H,2H, Perfluorodecyl triethoxysilane

APTES:

3-Aminopropyltriethoxy silane

E44:

Bisphenol-A-based epoxy

PMMA:

Poly(methyl methacrylate)

PFTS:

1H,1H,2H,2H-Perfluorooctyl trichlorosilane

DTDS:

Diethoxydimethylsilane

MPS:

(3-Mercaptopropyl) trimethoxysilane

GPTMS:

3-Glycidoxypropyl-trimethoxysilane

KH-560:

Glycidoxypropyltrimethoxysilane

LLDPE:

Linear low-density polyethene

OTS:

Octadecyltrichlorosilane

PS:

Polystyrene

ZrP:

Zirconium phosphate

TBA:

Tetra-n-butylammonium hydroxide

DMSNs:

Dendrimer-like mesoporous silica nanoparticles

\({\text{g}}-{{\text{C}}}_{3}{{\text{N}}}_{4}\) :

Graphitic carbon nitride

FTO:

Fluoride-doped tin oxide-coated

HDMS:

Hexamethyldisilazane

TMES:

Trimethylethoxysilane

PDMS:

Polydimethylsiloxane

MTES:

Triethoxymethylsilane

LBL:

Layer by layer

PMHS:

Polymethylhydrosiloxane

EVA:

Ethylene-vinyl acetate copolymer

PTFE:

Polytetrafluoroethylene

KH-570:

3-Methacryloxypropyltrimethoxysilane

HDFTS:

(Heptadecafluoro-1,1,2,2-tetrahydrodecyl) trichlorosilane

PTMS:

Phenyltrimethoxysilane

KH-792:

N-(2-Aminoethyl)-3 aminopropyltrimethoxysilane

CTMTS:

Cetyltrimethoxysilane

HDTMS:

Hexadecyltrimethoxysilane

TMCS:

Trimethylchlorosilane

TTPS:

Trimethoxy(propyl) silane

\({I}_{{\text{sc}}}\) :

Short-circuit current

\({V}_{{\text{oc}}}\) :

Open-circuit voltage

\({P}_{{\text{max}}}\) :

Maximum power output

\({T}_{{\text{amb}}}\) :

Ambient temperature

EVA:

Ethylene vinyl acetate

XPS:

X-ray photoelectron spectroscopy

SEM:

Scanning electron microscopy

EL:

Electroluminescence

EDS:

Energy dispersive X-ray spectroscopy

References

  1. Gupta, PK, “Renewable Energy Sources—A Long Way to Go in India.” Renew. Energy, 16 1216–1219 (1999)

    Article  Google Scholar 

  2. Diamanti, MV, Ormellese, M, Pedeferri, MP, “Characterization of Photocatalytic and Superhydrophilic Properties of Mortars Containing Titanium Dioxide.” Cem. Concr. Res., 38 1349–1353 (2008)

    Article  CAS  Google Scholar 

  3. Brendel, R, Thin-Film Crystalline Silicon Solar Cells: Physics and Technology. Wiley-VCH Verlag. https://doi.org/10.1002/3527603530 (2003)

  4. Wang, J, et al. “Broadband Antireflective Double-Layer Mesoporous Silica Coating with Strong Abrasion-Resistance for Solar Cell Glass.” RSC Adv., 6 25191–25197 (2016)

    Article  CAS  Google Scholar 

  5. Franhofer, P. Photovoltaics Report. www.ise.fraunhofer.de.

  6. Goetzberger, A, Volker, Hoffmann, VU, Photovoltaic Solar Energy Generation. Springer (2005). https://books.google.co.in/books?hl=en&lr=&id=_CMAP7VZ3xwC&oi=fnd&pg=PA1&ots=Nef59QVWpQ&sig=yjDORqKW6zUlNNFwrdj9gZwOOLk&redir_esc=y#v=onepage&q&f=false

  7. Dimmler, B, Wächter, R, “Manufacturing and Application of CIS Solar Modules.” Thin Solid Films, 515 5973–5978 (2007)

    Article  CAS  Google Scholar 

  8. Kushiya, K, “Key Near-Term R&D Issues for Continuous Improvement in CIS-Based Thin-Film PV Modules.” Sol. Energy Mater. Sol. Cells, 93 1037–1041 (2009)

    Article  CAS  Google Scholar 

  9. Cherupurakal, N, Mozumder, MS, Mourad, AHI, Lalwani, S, “Recent Advances in Superhydrophobic Polymers for Antireflective Self-Cleaning Solar Panels.” Renew. Sustain. Energy Rev., 151 111538 (2021)

    Article  CAS  Google Scholar 

  10. Simya, OK, Radhakrishnan, P, Ashok, A, Kavitha, K, Althaf, R, “Engineered Nanomaterials for Energy Applications.” Handb. Nanomater. Ind. Appl. https://doi.org/10.1016/B978-0-12-813351-4.00043-2 (2018)

    Article  Google Scholar 

  11. Mondal, AK, Bansal, K, “A Brief History and Future Aspects in Automatic Cleaning Systems for Solar Photovoltaic Panels.” Adv. Robot., 29 515–524 (2015)

    Article  Google Scholar 

  12. Aziz, F, Ismail, AF, “Spray Coating Methods for Polymer Solar Cells Fabrication: A Review.” Mater. Sci. Semicond. Process., 39 416–425 (2015)

    Article  CAS  Google Scholar 

  13. Hasan, K, et al. “Effects of Different Environmental and Operational Factors on the PV Performance: A Comprehensive Review.” Energy Sci. Eng., 10 656–675 (2022)

    Article  Google Scholar 

  14. He, G, Zhou, C, Li, Z, “Review of Self-Cleaning Method for Solar Cell Array.” Procedia Eng., 16 640–645 (2011)

    Article  Google Scholar 

  15. Mills, A, Lee, S-K, “A Web-Based Overview of Semiconductor Photochemistry-Based Current Commercial Applications.” J. Photochem. Photobiol. A Chem., 152 233–247 (2002)

    Article  CAS  Google Scholar 

  16. Barthlott, W, Neinhuis, C, “Purity of the Sacred Lotus, or Escape from Contamination in Biological Surfaces.” Planta, 202 1–8 (1997)

    Article  CAS  Google Scholar 

  17. Maghami, MR, et al. “Power Loss Due to Soiling on Solar Panel: A Review.” Renew. Sustain. Energy Rev., 59 1307–1316 (2016)

    Article  Google Scholar 

  18. Ilse, K, et al. “Techno-Economic Assessment of Soiling Losses and Mitigation Strategies for Solar Power Generation.” Joule, 3 (10) 2303–2321 (2019)

    Article  Google Scholar 

  19. Song, Z, Liu, J, Yang, H, “Air Pollution and Soiling Implications for Solar Photovoltaic Power Generation: A Comprehensive Review.” Appl. Energy, 298 117247 (2021)

    Article  CAS  Google Scholar 

  20. Ilse, KK, Figgis, BW, Naumann, V, Hagendorf, C, Bagdahn, J, “Fundamentals of Soiling Processes on Photovoltaic Modules.” Renew. Sustain. Energy Rev., 98 239–254 (2018)

    Article  Google Scholar 

  21. Figgis, B, Ennaoui, A, Ahzi, S, Rémond, Y, “Review of PV Soiling Particle Mechanics in Desert Environments.” Renew. Sustain. Energy Rev., 76 872–881 (2017)

    Article  Google Scholar 

  22. Ghazi, S, Sayigh, A, Ip, K, “Dust Effect on Flat Surfaces—A Review Paper.” Renew. Sustain. Energy Rev., 33 742–751 (2014)

    Article  Google Scholar 

  23. Sayyah, A, Horenstein, MN, Mazumder, MK, “Energy Yield Loss Caused by Dust Deposition on Photovoltaic Panels.” Sol. Energy, 107 576–604 (2014)

    Article  Google Scholar 

  24. Enaganti, PK, et al. “Experimental Investigations for Dust Build-Up on Low-Iron Glass Exterior and Its Effects on the Performance of Solar PV Systems.” Energy, 239 122213 (2022)

    Article  Google Scholar 

  25. Micheli, L, Fernández, EF, Aguilera, JT, Almonacid, F, “Economics of Seasonal Photovoltaic Soiling and Cleaning Optimization Scenarios.” Energy, 215 119018 (2021)

    Article  Google Scholar 

  26. Zitouni, H, et al. “Experimental Investigation and Modeling of Photovoltaic Soiling Loss as a Function of Environmental Variables: A Case Study of Semi-Arid Climate.” Sol. Energy Mater. Sol. Cells, 221 110874 (2021)

    Article  CAS  Google Scholar 

  27. Ul Mehmood, M, et al. “A New Cloud-Based IoT Solution for Soiling Ratio Measurement of PV Systems Using Artificial Neural Network.” Energies, 16 996 (2023)

    Article  Google Scholar 

  28. Zhang, W, et al. “SoilingEdge: PV Soiling Power Loss Estimation at the Edge Using Surveillance Cameras.” IEEE Trans. Sustain. Energy, 15 556–566 (2024)

    Article  Google Scholar 

  29. Araujo Costa Silva, L, et al. “Assessing the Impact of Soiling on Photovoltaic Efficiency Using Supervised Learning Techniques.” Expert Syst. Appl., 231 120816 (2023)

    Article  Google Scholar 

  30. Olabi, AG, et al. “Artificial Neural Networks Applications in Partially Shaded PV Systems.” Therm. Sci. Eng. Prog., 37 101612 (2023)

    Article  Google Scholar 

  31. Alshareef, MJ, “A Comprehensive Review of the Soiling Effects on PV Module Performance.” IEEE Access, 11 134623–134651 (2023)

    Article  Google Scholar 

  32. Selvi, S, Devaraj, V, PS, RP, Subramani, K, “Detection of Soiling on PV Module Using Deep Learning.” Int. J. Electr. Electron. Eng., 10 93–101 (2023)

    Article  Google Scholar 

  33. Simal Pérez, N, Alonso-Montesinos, J, Batlles, FJ, “Estimation of Soiling Losses from an Experimental Photovoltaic Plant Using Artificial Intelligence Techniques.” Appl. Sci., 11 1516 (2021)

    Article  Google Scholar 

  34. Sarkın, AS, Ekren, N, Sağlam, Ş, “A Review of Anti-Reflection and Self-Cleaning Coatings on Photovoltaic Panels.” Sol. Energy, 199 63–73 (2020)

    Article  Google Scholar 

  35. Lee, SE, Choi, SW, Yi, J, “Double-Layer Anti-reflection Coating Using MgF2 and CeO2 Films on a Crystalline Silicon Substrate.” Thin Solid Films, 376 208–213 (2000)

    Article  CAS  Google Scholar 

  36. Shanmugam, N, Pugazhendhi, R, Madurai Elavarasan, R, Kasiviswanathan, P, Das, N, “Anti-reflective Coating Materials: A Holistic Review from PV Perspective.” Energies, 13 2631 (2020)

    Article  CAS  Google Scholar 

  37. Project design > Array and system losses > Array incidence loss (IAM). https://www.pvsyst.com/help/iam_loss.htm.

  38. Luo, D, Su, R, Zhang, W, Gong, Q, Zhu, R, “Minimizing Non-radiative Recombination Losses in Perovskite Solar Cells.” Nat. Rev. Mater., 5 44–60 (2019)

    Article  Google Scholar 

  39. Kosyachenko, LA, Mathew, X, Paulson, PD, Lytvynenko, VY, Maslyanchuk, OL, “Optical and Recombination Losses in Thin-Film Cu(In, Ga)Se2 Solar Cells.” Sol. Energy Mater. Sol. Cells, 130 291–302 (2014)

    Article  CAS  Google Scholar 

  40. Yadav, P, et al. “Interfacial Kinetics of Efficient Perovskite Solar Cells.” Crystals, 7 252 (2017)

    Article  Google Scholar 

  41. Min, KH, et al. “An Analysis of Fill Factor Loss Depending on the Temperature for the Industrial Silicon Solar Cells.” Energies, 13 2931 (2020)

    Article  CAS  Google Scholar 

  42. Saeed, F, Zohaib, A, “Quantification of Losses in a Photovoltaic System: A Review.” 2nd Int. Elect. Conf. Appl. Sci. 35. https://doi.org/10.3390/ASEC2021-11200 (MDPI, 2021)

  43. Olivares, D, et al. “Study of the Effects of Soiling on PV Devices Using the Spin-Coating Technique in Accelerated Indoor Exposures.” Sol. Energy, 231 317–327 (2022)

    Article  CAS  Google Scholar 

  44. Yazdani, H, Yaghoubi, M, “Dust Deposition Effect on Photovoltaic Modules Performance and Optimization of Cleaning Period: A Combined Experimental–Numerical Study.” Sustain. Energy Technol. Assessments, 51 101946 (2022)

    Article  Google Scholar 

  45. Gholami, A, Khazaee, I, Eslami, S, Zandi, M, Akrami, E, “Experimental Investigation of Dust Deposition Effects on Photo-Voltaic Output Performance.” Sol. Energy, 159 346–352 (2018)

    Article  Google Scholar 

  46. Kobayashi, S, Iino, T, Kobayashi, H, Yamada, K, Yachi, T, “Degradation of Output Characteristics of a Small Photovoltaic Module Due to Dirt Spots.” INTELEC 05 - 27th Int. Telecommun. Conf. 435–439. IEEE. https://doi.org/10.1109/INTLEC.2005.335137 (2005)

  47. Said, SAM, Al-Aqeeli, N, Walwil, HM, “The Potential of Using Textured and Anti-reflective Coated Glasses in Minimizing Dust Fouling.” Sol. Energy, 113 295–302 (2015)

    Article  Google Scholar 

  48. Kazmerski, LL, et al. “Fundamental Studies of Adhesion of Dust to PV Module Surfaces: Chemical and Physical Relationships at the Microscale.” IEEE J. Photovolt., 6 719–729 (2016)

    Article  Google Scholar 

  49. Garg, HP, “Effect of Dirt on Transparent Covers in Flat-Plate Solar Energy Collectors.” Sol. Energy, 15 299–302 (1974)

    Article  Google Scholar 

  50. Hottel, HC, Woertz, BB, “The Performance of Flat-Plate Solar-Heat Collectors.” J. Fluids Eng., 64 91–103 (1942)

    Google Scholar 

  51. Berg, R. Heliostat Dust Buildup and Cleaning Studies. https://doi.org/10.2172/6867834 (1978)

  52. Mekhilef, S, Saidur, R, Kamalisarvestani, M, “Effect of Dust, Humidity and Air Velocity on Efficiency of Photovoltaic Cells.” Renew. Sustain. Energy Rev., 16 2920–2925 (2012)

    Article  CAS  Google Scholar 

  53. Meyer, EL, van Dyk, EE, “Assessing the Reliability and Degradation of Photovoltaic Module Performance Parameters.” IEEE Trans. Reliab., 53 83–92 (2004)

    Article  Google Scholar 

  54. Dubey, S, Sarvaiya, JN, Seshadri, B, “Temperature Dependent Photovoltaic (PV) Efficiency and Its Effect on PV Production in the World—A Review.” Energy Procedia, 33 311–321 (2013)

    Article  Google Scholar 

  55. Rahman, MM, Hasanuzzaman, M, Rahim, NA, “Effects of Various Parameters on PV-Module Power and Efficiency.” Energy Convers. Manag., 103 348–358 (2015)

    Article  Google Scholar 

  56. Brecl, K, Topič, M, “Self-shading Losses of Fixed Free-Standing PV Arrays.” Renew. Energy, 36 3211–3216 (2011)

    Article  Google Scholar 

  57. Gwandu, BAL, Creasey, DJ, “Humidity: A Factor in the Appropriate Positioning of a Photovoltaic Power Station.” Renew. Energy, 6 313–316 (1995)

    Article  Google Scholar 

  58. Sohani, A, Shahverdian, MH, Sayyaadi, H, Garcia, DA, “Impact of Absolute and Relative Humidity on the Performance of Mono and Poly Crystalline Silicon Photovoltaics; Applying Artificial Neural Network.” J. Clean. Prod., 276 123016 (2020)

    Article  CAS  Google Scholar 

  59. Ebert, M, Muller, M, Renewable, N, Kurtz, S, “Impact of Structured Glass on Light Transmission, Temperature.”

  60. Kurnik, J, Jankovec, M, Brecl, K, Topic, M, “Outdoor Testing of PV Module Temperature and Performance Under Different Mounting and Operational Conditions.” Sol. Energy Mater. Sol. Cells, 95 373–376 (2011)

    Article  CAS  Google Scholar 

  61. Kaldellis, JK, Kapsali, M, Kavadias, KA, “Temperature and Wind Speed Impact on the Efficiency of PV Installations. Experience Obtained from Outdoor Measurements in Greece.” Renew. Energy, 66 612–624 (2014)

    Article  Google Scholar 

  62. Gökmen, N, et al. “Investigation of Wind Speed Cooling Effect on PV Panels in Windy Locations.” Renew. Energy, 90 283–290 (2016)

    Article  Google Scholar 

  63. Goverde, H, et al. “Spatial and Temporal Analysis of Wind Effects on PV Modules: Consequences for Electrical Power Evaluation.” Sol. Energy, 147 292–299 (2017)

    Article  Google Scholar 

  64. Deb, J, Yohanis, YG, Norton, B, “The Impact of Array Inclination and Orientation on the Performance of a Grid-Connected Photovoltaic System.” Renew. Energy, 32 118–140 (2007)

    Article  Google Scholar 

  65. Vela, N, Chenlo, F, “Early Degradation of Silicon PV Modules and Guaranty Conditions.” Sol. Energy, 85 2264–2274 (2011)

    Article  Google Scholar 

  66. Cluintana, MA, King, DL, Laboratories, SN, “Commonly Observed Degradation in Field-Aged Photovoltaic Modules.” 1436–1439

  67. Osterwald, CR, Anderberg, A, Rummel, S, Ottoson, L, “Degradation Analysis of Weathered Crystalline-Silicon PV Modules.” Conf. Rec. IEEE Photovolt. Spec. Conf. 1392–1395. https://doi.org/10.1109/pvsc.2002.1190869 (2002)

  68. King, DL, “Photovoltaic Module Performance and Durability Following Long‐Term Field Exposure.” Prog. Photovolt. 8 (2) 241–256 (2000)

  69. Aboagye, B, Gyam, S, Antwi, E, Djordjevic, S, “Investigation into the Impacts of Design, Installation, Operation and Maintenance Issues on Performance and Degradation of Installed Solar Photovoltaic (PV) Systems.” Energy Sustain. Dev., 66 165–176 (2022)

    Article  Google Scholar 

  70. Kaplani, E, “Detection of Degradation Effects in Field-Aged c-Si Solar Cells through IR Thermography and Digital Image Processing.” Int. J. Photoenergy, 2012 1–11 (2012)

    Article  Google Scholar 

  71. Cândida, M, et al. “The Causes and Effects of Degradation of Encapsulant Ethylene Vinyl Acetate Copolymer (EVA) in Crystalline Silicon Photovoltaic Modules: A Review.” Renew. Sustain. Energy Rev., 81 2299–2317 (2018)

    Article  Google Scholar 

  72. Kim, JH, et al. “Nanomechanical and Fluorescence Characterizations of Weathered PV Module Encapsulation.” IEEE J. Photovolt., 11 725–730 (2021)

    Article  Google Scholar 

  73. Meena, R, Kumar, S, Gupta, R, “Comparative Investigation and Analysis of Delaminated and Discolored Encapsulant Degradation in Crystalline Silicon Photovoltaic Modules.” Sol. Energy, 203 114–122 (2020)

    Article  CAS  Google Scholar 

  74. Liu, Z, et al. “Solar Energy Materials and Solar Cells Quantitative Analysis of Degradation Mechanisms in 30-Year-Old PV Modules.” Sol. Energy Mater. Sol. Cells, 200 110019 (2019)

    Article  CAS  Google Scholar 

  75. Lisco, F, Virtuani, A, Ballif, C, “Optimisation of the Frontsheet Encaspulant for Increased Resistance of Lightweight Glass-Free Solar PV Modules.” 37th Eur. PV Sol. Energy Conf. Exhib., 777–783 (2000)

  76. Li, F, et al. “Correlation of UV Fluorescence Images with Performance Loss of Field-Retrieved Photovoltaic Modules.” IEEE J. Photovolt., 11 926–935 (2021)

    Article  Google Scholar 

  77. Gopalakrishna, H, Arularasu, P, Dolia, K, Sinha, A, Tamizhmani, G, “Characterization of Encapsulant Degradation in Accelerated UV Stressed Mini-Modules with UV-Cut and UV-Pass EVA.” 46th Conf. Rec. IEEE Photovolt. Spec. Conf., 1961–1964. https://doi.org/10.1109/PVSC40753.2019.8980897 (2019)

  78. Gambogi, W, et al. “A Comparison of Key PV Backsheet and Module Performance from Fielded Module Exposures and Accelerated Tests.” IEEE J. Photovolt., 4 935–941 (2014)

    Article  Google Scholar 

  79. Liu, F, Jiang, L, Yang, S, “Ultra-Violet Degradation Behavior of Polymeric Backsheets for Photovoltaic Modules.” Sol. Energy, 108 88–100 (2014)

    Article  CAS  Google Scholar 

  80. Tanzi, MC, Farè, S, Candiani, G, “Biomaterials and Applications.” Foundations in Biomaterials Engineering, Elsevier. https://doi.org/10.1016/B978-0-08-101034-1.00004-9 (2019)

    Article  Google Scholar 

  81. Lin, C-C, Krommenhoek, PJ, Watson, SS, Gu, X, “Chemical Depth Profiling of Photovoltaic Backsheets after Accelerated Laboratory Weathering.” In: Proc. SPIE 9179, Reliability of Photovoltaic Cells, Modules, Components, and Systems VII, 91790R. https://doi.org/10.1117/12.2066400 (2014)

  82. Lyu, Y, et al. “Impact of Environmental Variables on the Degradation of Photovoltaic Components and Perspectives for the Reliability Assessment Methodology.” Sol. Energy, 199 425–436 (2020)

    Article  CAS  Google Scholar 

  83. Yang, S, Jiang, L, “Crystalline Silicon PV Module Field Failures.” Durab. Reliab. Polym. Other Mater. Photovolt. Modul. https://doi.org/10.1016/B978-0-12-811545-9.00008-2 (2019)

    Article  Google Scholar 

  84. Gebhardt, P, Bauermann, LP, Philipp, D, “Backsheet Chalking - Theoretical Background and Relation to Backsheet Cracking and Insulation Failures.” 35th Eur. PV Sol. Energy Conf. Exhib., 1–4 (2018)

  85. Kim, J, et al. “A Review of the Degradation of Photovoltaic Modules for Life Expectancy.” Energies, 14 4278 (2021)

    Article  CAS  Google Scholar 

  86. Tanahashi, T, Sakamoto, N, Shibata, H, Masuda, A, “Corrosion under Front Electrodes of Crystalline Silicon Photovoltaic Cells Predominantly Contributes to Their Performance Degradation.” In: 2019 IEEE 46th PV Spec. Conf. (PVSC) 2013–2016. IEEE (2019). https://doi.org/10.1109/PVSC40753.2019.8980636

  87. Iqbal, N, et al. “Multiscale Characterization of Photovoltaic Modules—Case Studies of Contact and Interconnect Degradation.” IEEE J. Photovolt., 12 62–72 (2022)

    Article  Google Scholar 

  88. Iqbal, N, et al. “Characterization of Front Contact Degradation in Monocrystalline and Multicrystalline Silicon Photovoltaic Modules Following Damp Heat Exposure.” Sol. Energy Mater. Sol. Cells, 235 111468 (2022)

    Article  CAS  Google Scholar 

  89. Kumar, S, Meena, R, Gupta, R, “Imaging and Micro-structural Characterization of Moisture Induced Degradation in Crystalline Silicon Photovoltaic Modules.” Sol. Energy, 194 903–912 (2019)

    Article  CAS  Google Scholar 

  90. Ma, X, et al. “Data-Driven I–V Feature Extraction for Photovoltaic Modules.” IEEE J. Photovolt., 9 1405–1412 (2019)

    Article  Google Scholar 

  91. Pierce, BG, Karimi, AM, Liu, J, French, RH, Braid, JL, “Identifying Degradation Modes of Photovoltaic Modules Using Unsupervised Machine Learning on Electroluminescense Images.” Conf. Rec. IEEE Photovolt. Spec. Conf. 2020-June, 1850–1855 (2020).

  92. Hamadi, RTA, et al. “Humidity Impact on Photovoltaic Cells Performance: A Review.” Int. J. Recent Eng. Res. Dev., 03 27–37 (2018)

    Google Scholar 

  93. Ni, F, Xiao, P, Zhang, C, Chen, T, “Hygroscopic Polymer Gels Toward Atmospheric Moisture Exploitations for Energy Management and Freshwater Generation.” Matter, 5 2624–2658 (2022)

    Article  CAS  Google Scholar 

  94. Barreira-Pinto, R, Carneiro, R, Miranda, M, Guedes, RM, “Polymer-Matrix Composites: Characterising the Impact of Environmental Factors on Their Lifetime.” Materials, 16 3913 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Sommeling, PM, Liu, J, Kroon, JM, “Corrosion Effects in Bifacial Crystalline Silicon PV Modules; Interactions Between Metallization and Encapsulation.” Sol. Energy Mater. Sol. Cells, 256 112321 (2023)

    Article  CAS  Google Scholar 

  96. Segbefia, OK, Akhtar, N, Sætre, TO, “Defects and Fault Modes of field-Aged Photovoltaic Modules in the Nordics.” Energy Rep., 9 3104–3119 (2023)

    Article  Google Scholar 

  97. Li, Y, et al. “Artificial Graphite Paper as a Corrosion-Resistant Current Collector for Long-Life Lithium Metal Batteries.” Adv. Funct. Mater., 33 2214523 (2023)

    Article  CAS  Google Scholar 

  98. Han, H, et al. “Degradation Analysis of Crystalline Silicon Photovoltaic Modules Exposed Over 30 Years in Hot-Humid Climate in China.” Sol. Energy, 170 510–519 (2018)

    Article  CAS  Google Scholar 

  99. Semba, T, Masuda, A, “Corrosion Behavior of Solder Ribbon Caused by Acidification Inside Crystalline Si Photovoltaic Modules.” Conf. Rec. IEEE Photovolt. Spec. Conf., 2296–2298 (2021). https://doi.org/10.1109/PVSC43889.2021.9518648

  100. Rabelo, M, et al. “Crystalline Silicon Photovoltaic Module Degradation: Galvanic Corrosion and Its Solution.” Eng. Fail. Anal., 138 106329 (2022)

    Article  CAS  Google Scholar 

  101. Kim, J-H, Park, J, Kim, D, Park, N, “Study on Mitigation Method of Solder Corrosion for Crystalline Silicon Photovoltaic Modules.” Int. J. Photoenergy, 2014 1–9 (2014)

    Article  CAS  Google Scholar 

  102. Luo, J, et al. “Robust Corrosion Performance of Cold Sprayed Aluminide Coating in Ternary Molten Carbonate Salt for Concentrated Solar Power Plants.” Sol. Energy Mater. Sol. Cells, 237 111573 (2022)

    Article  CAS  Google Scholar 

  103. Merino-Millan, D, Múnez, CJ, Garrido-Maneiro, MÁ, Poza, P, “Alternative Low-Power Plasma-Sprayed Inconel 625 Coatings for Thermal Solar Receivers: Effects of High Temperature Exposure on Adhesion and Solar Absorptivity.” Sol. Energy Mater. Sol. Cells, 245 111839 (2022)

    Article  CAS  Google Scholar 

  104. Wang, X, Tian, X, Chen, X, Ren, L, Geng, C, “A Review of End-of-Life Crystalline Silicon Solar Photovoltaic Panel Recycling Technology.” Sol. Energy Mater. Sol. Cells, 248 111976 (2022)

    Article  CAS  Google Scholar 

  105. Pan, TJ, et al. “Anti-Corrosion Performance of the Conductive Bilayer CrC/CrN Coated 304SS Bipolar Plate in Acidic Environment.” Corros. Sci., 206 110495 (2022)

    Article  CAS  Google Scholar 

  106. Yin, Y, et al. “Role of Headspace Environment for Phase Change Carbonates on the Corrosion of Stainless Steel 316L: High Temperature Thermal Storage Cycling in Concentrated Solar Power Plants.” Sol. Energy Mater. Sol. Cells, 251 112170 (2023)

    Article  CAS  Google Scholar 

  107. Ma, S, et al. “Development of Encapsulation Strategies Towards the Commercialization of Perovskite Solar Cells.” Energy Environ. Sci., 15 13–55 (2022)

    Article  CAS  Google Scholar 

  108. Bender, R, et al. “Corrosion Challenges Towards a Sustainable Society.” Mater. Corros., 73 1730–1751 (2022)

    Article  CAS  Google Scholar 

  109. Yurrita, N, et al. “Composite Material Incorporating Protective Coatings for Photovoltaic Cell Encapsulation.” Sol. Energy Mater. Sol. Cells, 245 111879 (2022)

    Article  CAS  Google Scholar 

  110. Xiang, L, et al. “Progress on the Stability and Encapsulation Techniques of Perovskite Solar Cells.” Org. Electron., 106 106515 (2022)

    Article  CAS  Google Scholar 

  111. Mohammed Niyaz, H, Meena, R, Gupta, R, “Impact of Cracks on Crystalline Silicon Photovoltaic Modules Temperature Distribution.” Sol. Energy, 225 148–161 (2021)

    Article  CAS  Google Scholar 

  112. Dhimish, M, et al., “The Impact of Cracks on the Performance of Photovoltaic Modules. 2017 IEEE Manchester PowerTech, 1–6. IEEE (2017). https://doi.org/10.1109/PTC.2017.7980824

  113. Lyu, Y, et al. “Drivers for the Cracking of Multilayer Polyamide-Based Backsheets in Field Photovoltaic Modules: In-Depth Degradation Mapping Analysis.” Prog. Photovoltaics Res. Appl., 28 704–716 (2020)

    Article  CAS  Google Scholar 

  114. Dubey, R, Kottantharayil, A, Shiradkar, N, Vasi, J, “Effect of Mechanical Loading Cycle Parameters on Crack Generation and Power Loss in PV Modules.” 2021 IEEE 48th PV Spec. Conf. (PVSC), 0799–0802. IEEE. https://doi.org/10.1109/PVSC43889.2021.9519074 (2021)

  115. Alimi, OA, Meyer, EL, Olayiwola, OI, “Solar Photovoltaic Modules’ Performance Reliability and Degradation Analysis—A Review.” Energies, 15 5964 (2022)

    Article  CAS  Google Scholar 

  116. Rydh, CJ, Sandén, BA, “Energy Analysis of Batteries in Photovoltaic Systems. Part I: Performance and Energy Requirements.” Energy Convers. Manag., 46 1957–1979 (2005)

    Article  CAS  Google Scholar 

  117. Chumchal, C, Kurzweil, D, “Lead–Acid Battery Operation in Micro-Hybrid and Electrified Vehicles.” In Lead-Acid Batteries for Future Automobiles. https://doi.org/10.1016/B978-0-444-63700-0.00013-1 (2017)

    Article  Google Scholar 

  118. García, JO, Gago, EJ, Bayo, JA, Montes, GM, “The Use of Solar Energy in the Buildings Construction Sector in Spain.” Renew. Sustain. Energy Rev., 11 2166–2178 (2007)

    Article  Google Scholar 

  119. Zeman, M, “Photovoltaic Systems, 9.1: Components of a PV System.” Sol. Cells, 9 1–17 (2012)

    Google Scholar 

  120. Viitanen, J, “Energy Efficient Lighting Systems in Buildings with Integrated Photovoltaics.” Thesis, AAlto University, 2015

  121. Roach, P, Shirtcliffe, NJ, Newton, MI, “Progess in Superhydrophobic Surface Development.” Soft Matter, 4 224–240 (2008)

    Article  CAS  PubMed  Google Scholar 

  122. Li, Y, Li, L, Sun, J, “Bioinspired Self-healing Superhydrophobic Coatings.” Angew. Chem. Int. Ed., 49 6129–6133 (2010)

    Article  CAS  Google Scholar 

  123. Fan, H, et al. “Three-Dimensionally Ordered Gold Nanocrystal/Silica Superlattice Thin Films Synthesized via Sol–Gel Self-Assembly.” Adv. Funct. Mater., 16 891–895 (2006)

    Article  CAS  Google Scholar 

  124. Esfahani, MB, Eshaghi, A, Bakhshi, SR, “Transparent Hydrophobic, Self-Cleaning, Anti-Icing and Anti-Dust Nano-Structured Silica Based Thin Film on Cover Glass Solar Cell.” J. Non. Cryst. Solids, 583 121479 (2022)

    Article  CAS  Google Scholar 

  125. Wu, Z, Lee, D, Rubner, MF, Cohen, RE, “Structural Color in Porous, Superhydrophilic, and Self-Cleaning SiO2/TiO2 Bragg Stacks.” Small., 3 1445–1451 (2007)

    Article  CAS  PubMed  Google Scholar 

  126. Xu, L, Li, X, He, J, “Mechanically Durable Superhydrophilic Antireflective Nanoparticles Coatings via Layer-by-Layer Assembly Followed by Post-Treatments.” Acta Chim. Sin., 69 2648–2652 (2011)

    CAS  Google Scholar 

  127. Gemici, Z, Shimomura, H, Cohen, RE, Rubner, MF, “Hydrothermal Treatment of Nanoparticle Thin Films for Enhanced Mechanical Durability.” Langmuir, 24 2168–2177 (2008)

    Article  CAS  PubMed  Google Scholar 

  128. Midtdal, K, Jelle, BP, “Self-cleaning Glazing Products: A State-of-the-Art Review and Future Research Pathways.” Sol. Energy Mater. Sol. Cells, 109 126–141 (2013)

    Article  CAS  Google Scholar 

  129. de Jesus, MAML, et al. “Anti-soiling Coatings for Solar Cell Cover Glass: Climate and Surface Properties Influence.” Sol. Energy Mater. Sol. Cells, 185 517–523 (2018)

    Article  CAS  Google Scholar 

  130. Hudedmani, MG, Joshi, G, Umayal, RM, Revankar, A, “A Comparative Study of Dust Cleaning Methods for the Solar PV Panels.” Adv. J. Grad. Res., 1 24–29 (2017)

    Article  Google Scholar 

  131. Smith, MK, et al. “Effects of Natural and Manual Cleaning on Photovoltaic Output.” J. Sol. Energy Eng., 135 034505 (2013)

    Article  Google Scholar 

  132. Syafiq, A, Pandey, AK, Adzman, NN, Rahim, NA, “Advances in Approaches and Methods for Self-cleaning of Solar Photovoltaic Panels.” Sol. Energy, 162 597–619 (2018)

    Article  Google Scholar 

  133. Xiong, C, Zhang, Y, Chen, G, Qiao, Q, “Research on Dust Removal Strategies of Photovoltaic Panels in Ultra-high Altitude Photovoltaic Demonstration Base.” J. Phys. Conf. Ser., 2433 012025 (2023)

    Article  Google Scholar 

  134. Şevik, S, Aktaş, A, “Performance Enhancing and Improvement Studies in a 600 kW Solar Photovoltaic (PV) Power Plant; Manual and Natural Cleaning, Rainwater Harvesting and the Snow Load Removal on the PV Arrays.” Renew. Energy, 181 490–503 (2022)

    Article  Google Scholar 

  135. Nahar Myyas, R, Al-Dabbasa, M, Tostado-Véliz, M, Jurado, F, “A Novel Solar Panel Cleaning Mechanism to Improve Performance and Harvesting Rainwater.” Sol. Energy, 237 19–28 (2022)

    Article  Google Scholar 

  136. Farrokhi Derakhshandeh, J, et al. “A Comprehensive Review of Automatic Cleaning Systems of Solar Panels.” Sustain. Energy Technol. Assessments, 47 101518 (2021)

    Article  Google Scholar 

  137. Manju, B, Bari, A, Pavan, CM, “Automatic Solar Panel Cleaning System.” Int. J. Adv. Sci. Res. Eng., 4 26–31 (2018)

    Google Scholar 

  138. De, S, et al. “Surface Engineering of Solar Glass Covers for Soiling Related Issues by Applying Electrodynamic Screens (EDS).” Surf. Interfaces, 25 101222 (2021)

    Article  CAS  Google Scholar 

  139. Mazumder, MK, et al. “Mitigation of Dust Impact on Solar Collectors by Water-Free Cleaning with Transparent Electrodynamic Films: Progress and Challenges.” IEEE J. Photovolt., 7 1342–1353 (2017)

    Article  Google Scholar 

  140. Guo, B, Javed, W, Khoo, YS, Figgis, B, “Solar PV Soiling Mitigation by Electrodynamic Dust Shield in Field Conditions.” Sol. Energy, 188 271–277 (2019)

    Article  Google Scholar 

  141. Zheng, Y, Gao, X, Jiang, L, “Directional Adhesion of Superhydrophobic Butterfly Wings.” Soft Matter, 3 178–182 (2007)

    Article  CAS  PubMed  Google Scholar 

  142. Parker, AR, Lawrence, CR, “Water Capture by a Desert Beetle.” Nature, 414 33–34 (2001)

    Article  CAS  PubMed  Google Scholar 

  143. Bormashenko, E, Bormashenko, Y, Stein, T, Whyman, G, Bormashenko, E, “Why Do Pigeon Feathers Repel Water? Hydrophobicity of Pennae, Cassie–Baxter Wetting Hypothesis and Cassie–Wenzel Capillarity-Induced Wetting Transition.” J. Colloid Interface Sci., 311 212–216 (2007)

    Article  CAS  PubMed  Google Scholar 

  144. Burton, Z, Bhushan, B, “Surface Characterization and Adhesion and Friction Properties of Hydrophobic Leaf Surfaces.” Ultramicroscopy, 106 709–719 (2006)

    Article  CAS  PubMed  Google Scholar 

  145. Polizos, G, et al. “Transparent Superhydrophobic Surfaces Using a Spray Coating Process.” Sol. Energy Mater. Sol. Cells, 176 405–410 (2018)

    Article  CAS  Google Scholar 

  146. Burton, Z, Bhushan, B, “Hydrophobicity, Adhesion, and Friction Properties of Nanopatterned Polymers and Scale Dependence for Micro- and Nanoelectromechanical Systems.” Nano Lett., 5 1607–1613 (2005)

    Article  CAS  PubMed  Google Scholar 

  147. Rong, W, et al. “Light-Induced Amphiphilic Surfaces.” Nature, 338 431–432 (1997)

    Google Scholar 

  148. Fujishima, A, Honda, K, “Electrochemical Photolysis of Water at a Semiconductor Electrode.” Nature, 238 37–38 (1972)

    Article  CAS  PubMed  Google Scholar 

  149. Nakata, K, Fujishima, A, “TiO2 Photocatalysis: Design and Applications.” J. Photochem. Photobiol. C Photochem. Rev., 13 169–189 (2012)

    Article  CAS  Google Scholar 

  150. Djurišić, AB, Leung, YH, Ching Ng, AM, “Strategies for Improving the Efficiency of Semiconductor Metal Oxide Photocatalysis.” Mater. Horizons, 1 400–410 (2014)

    Article  Google Scholar 

  151. Agrios, AG, Pichat, P, “State of the Art and Perspectives on Materials and Applications of Photocatalysis over TiO2.” J. Appl. Electrochem., 35 655–663 (2005)

    Article  CAS  Google Scholar 

  152. Syafiq, A, et al. “Application of Transparent Self-cleaning Coating for Photovoltaic Panel: A Review.” Curr. Opin. Chem. Eng., 36 100801 (2022)

    Article  Google Scholar 

  153. Cheng, H, Selloni, A, “Hydroxide Ions at the Water/Anatase TiO(101) Interface: Structure and Electronic States from First Principles Molecular Dynamics.” Langmuir, 26 11518–11525 (2010)

    Article  CAS  PubMed  Google Scholar 

  154. Guo, MY, Ng, AMC, Liu, F, Djurišić, AB, Chan, WK, “Photocatalytic Activity of Metal Oxides—The Role of Holes and OH Radicals.” Appl. Catal. B Environ., 107 150–157 (2011)

    Article  CAS  Google Scholar 

  155. Lim, TH, Jeong, SM, Kim, SD, Gyenis, J, “Photocatalytic Decomposition of NO by TiO2 Particles.” J. Photochem. Photobiol. A Chem., 134 209–217 (2000)

    Article  CAS  Google Scholar 

  156. Dalton, J, et al. “Photocatalytic Oxidation of NOx Gases Using TiO2: A Surface Spectroscopic Approach.” Environ. Pollut., 120 415–422 (2002)

    Article  CAS  PubMed  Google Scholar 

  157. Lu, H, Zheng, C, “Super-Hydrophobic and Super-Hydrophilic Coatings for Solar.” Coatings, 12, (2022)

  158. Adekanbi, ML, Alaba, ES, John, TJ, Tundealao, TD, Banji, TI, “Soiling Loss in Solar Systems: A Review of Its Effect on Solar Energy Efficiency and Mitigation Techniques.” Clean. Energy Syst., 7 100094 (2024)

    Article  Google Scholar 

  159. Gupta, V, Sharma, M, Pachauri, RK, Dinesh Babu, KN, “Comprehensive Review on Effect of Dust on Solar Photovoltaic System and Mitigation Techniques.” Sol. Energy, 191 596–622 (2019)

    Article  Google Scholar 

  160. Patil, PA, Bagi, JS, Wagh, MM, “A Review on Cleaning Mechanism of Solar Photovoltaic Panel.” 2017 Int. Conf. Energy, Commun. Data Anal. Soft Comput. ICECDS 2017, 250–256. https://doi.org/10.1109/ICECDS.2017.8389895 (2018)

  161. Azouzoute, A, El Ydrissi, M, Zitouni, H, Hajjaj, C, Garoum, M, “Dust Accumulation and Photovoltaic Performance in Semi-Arid Climate: Experimental Investigation and Design of Cleaning Robot.” 47–74 (2021). https://doi.org/10.1007/978-3-030-64565-6_3

  162. Hariri, N, “A Novel Dust Mitigation Technology Solution of a Self-cleaning Method for a PV Module Capable of Harnessing Reject Heat Using Shape Memory Alloy.” Case Stud. Therm. Eng., 32 101894 (2022)

    Article  Google Scholar 

  163. Al-Housani, M, Bicer, Y, Koç, M, “Assessment of Various Dry Photovoltaic Cleaning Techniques and Frequencies on the Power Output of CdTe-Type Modules in Dusty Environments.” Sustainability, 11 2850 (2019)

    Article  CAS  Google Scholar 

  164. UL Solutions. https://www.ul.com/.

  165. F1 | SolarCleano. https://solarcleano.com/product/solar-panel-cleaning-robot-f1.

  166. GEKKO Solar Robot. https://www.serbot.ch/en/solar-panels-cleaning/gekko-solar-robot.

  167. Jothi Venkatesh, K, SankaraNarayanan, S, Arjun, P, Kannan, K, “AI Based Solar Panel Cleaning Robot.” Int. J. Eng. Technol. Manag. Sci., 7 313–318 (2023)

    Google Scholar 

  168. Faes, A, et al. “Field Test and Electrode Optimization of Electrodynamic Cleaning Systems for Solar Panels.” Prog. Photovolt. Res. Appl., 27 1020–1033 (2019)

    Article  CAS  Google Scholar 

  169. Mazumder, M, et al. “Characterization of Electrodynamic Screen Performance for Dust Removal from Solar Panels and Solar Hydrogen Generators.” IEEE Trans. Ind. Appl., 49 1793–1800 (2013)

    Article  CAS  Google Scholar 

  170. Masuda, S, Matsumoto, Y, “Contact-Type Electric Curtain for Electrodynamical Control of Charged Dust Particles.” Proc. 2nd Int. Conf. Static Electr. Frankfurt, No. 72, 1370–1309

  171. Bock, JP, Robison, JR, Sharma, R, Zhang, J, Mazumder, MK, “An Efficient Power Management Approach for Self-cleaning Solar Panels with Integrated Electrodynamic Screens.” Proc. ESA Annu. Meet. Electrost. Pap. 02, 1–6 (2008)

  172. He, B, Lu, H, Zheng, C, Wang, Y, “Characteristics and Cleaning Methods of Dust Deposition on Solar Photovoltaic Modules—A Review.” Energy, 263 126083 (2023)

    Article  Google Scholar 

  173. Mazumder, MK, et al. “Self-cleaning Transparent Dust Shields for Protecting Solar Panels and Other Devices.” Part. Sci. Technol., 25 5–20 (2007)

    Article  CAS  Google Scholar 

  174. Kawamoto, H, “Electrostatic Cleaning Equipment for Dust Removal from Soiled Solar Panels.” J. Electrostat., 98 11–16 (2019)

    Article  Google Scholar 

  175. Guo, B, Figgis, B, Javed, W, “Measurement of Electrodynamic Dust Shield Efficiency in Field Conditions.” J. Electrostat., 97 26–30 (2019)

    Article  Google Scholar 

  176. Goetzberger, A, Knobloch, J, Voß, B, Crystalline Silicon Solar Cells. Wiley, Hoboken. https://doi.org/10.1002/9781119033769 (2014)

    Book  Google Scholar 

  177. Yunus Khan, TM, et al. “Optimum Location and Influence of Tilt Angle on Performance of Solar PV Panels.” J. Therm. Anal. Calorim., 141 511–532 (2020)

    Article  CAS  Google Scholar 

  178. Maqsood, S, et al. “Assessment of Different Optimized Anti-reflection Coatings for ZnO/Si Heterojunction Solar Cells.” Ceram. Int., 49 37118–37126 (2023)

    Article  CAS  Google Scholar 

  179. Hashmi, G, Rashid, MJ, Mahmood, ZH, Hoq, M, Rahman, MH, “Investigation of the Impact of Different ARC Layers Using PC1D Simulation: Application to Crystalline Silicon Solar Cells.” J. Theor. Appl. Phys., 12 327–334 (2018)

    Article  Google Scholar 

  180. Novikova, A, Katiyi, A, Karabchevsky, A, “Nature-Inspired Anti-Reflective Texturization for Solar Energy Applications.” Adv. Mater. Technol. https://doi.org/10.1002/admt.202301128 (2023)

    Article  Google Scholar 

  181. Yong, J, Tao, G, Hui, S, Wang, B, “ZnO–SiO2 Composite Coating with Anti-reflection and Photoluminescence Properties for Improving the Solar Cell Efficiency.” Compos. Part B, 251 110486 (2023)

    Article  Google Scholar 

  182. Sharifi Rad, A, Afshar, A, Azadeh, M, “Antireflection and Photocatalytic Single Layer and Double Layer ZnO and ZnO–TiO2 Thin Films.” Opt. Mater., 136 113501 (2023)

    Article  CAS  Google Scholar 

  183. Manna, S, et al. “Antireflection Cum Photocatalytic with Superhydrophilic Based Durable Single Layer Mesoporous TiO2–ZrO2 Coating Surface for Efficient Solar Photovoltaic Application.” Sustain. Energy Technol. Assess., 57 103236 (2023)

    Google Scholar 

  184. Shi, T, Jia, Q, Wang, H, Chen, R, “Preparation of Superhydrophobic and Oleophobic Antireflective Coating with High Transmittance.” Surf. Coat. Technol., 428 127863 (2021)

    Article  CAS  Google Scholar 

  185. Li, Z, et al. “Robust SiO2@TiO2 Nanocoatings with Antireflection and Photocatalytic Self-cleaning Properties by Introducing Commercial P25 TiO2.” Colloids Surf. A Physicochem. Eng. Asp., 664 131176 (2023)

    Article  CAS  Google Scholar 

  186. Du, D, et al. “One-Step Synthesis of SiO2 Nanomesh for Antireflection and Self-cleaning of Solar Cell.” J. Colloid Interface Sci., 630 795–803 (2023)

    Article  CAS  PubMed  Google Scholar 

  187. Matter by Design | University of Colorado Boulder. https://www.colorado.edu/faculty/zunger-matter-by-design/.

  188. Home | Center for Next Generation of Materials Design. https://www.cngmd-efrc.org/.

  189. Balachandran, PV, et al. “Predictions of New ABO3 Perovskite Compounds by Combining Machine Learning and Density Functional Theory.” Phys. Rev. Mater., 2 043802 (2018)

    Article  CAS  Google Scholar 

  190. Brito, PP, Diniz, ASAC, Kazmerski, LL, “Materials Design and Discovery: Potential for Application to Soiling Mitigation in Photovoltaic Systems.” Sol. Energy, 183 791–804 (2019)

    Article  Google Scholar 

  191. Zunger, A, “Beware of Plausible Predictions of Fantasy Materials.” Nature, 566 447–449 (2019)

    Article  CAS  PubMed  Google Scholar 

  192. Luo, M, et al. “Non-fluorinated Superhydrophobic Film with High Transparency for Photovoltaic Glass Covers.” Appl. Surf. Sci., 609 155299 (2023)

    Article  CAS  Google Scholar 

  193. Wang, P, Yan, X, Zeng, J, Luo, C, Wang, C, “Anti-reflective Superhydrophobic Coatings with Excellent Durable and Self-cleaning Properties for Solar Cells.” Appl. Surf. Sci., 602 154408 (2022)

    Article  CAS  Google Scholar 

  194. Wang, SD, Shu, YY, “Superhydrophobic Antireflective Coating with High Transmittance.” J. Coat. Technol. Res., 10 527–535 (2013)

    Article  CAS  Google Scholar 

  195. Lin, H, et al. “Preparation of Antireflective Coatings with Moisture Resistance and a Widely Tunable Refractive Index by Combining the Sol–Gel Method with Evaporation Concentration.” Constr. Build. Mater., 318 125810 (2022)

    Article  CAS  Google Scholar 

  196. Chi, F, Zeng, Y, Liu, C, “Tuning Refractive Indices of Sol–Gel Silica Coatings by Ammonia Treatment for Broadband Antireflection Applications.” Optik, 224 165501 (2020)

    Article  CAS  Google Scholar 

  197. Zhi, J, Zhang, LZ, “Durable Superhydrophobic Surface with Highly Antireflective and Self-cleaning Properties for the Glass Covers of Solar Cells.” Appl. Surf. Sci., 454 239–248 (2018)

    Article  CAS  Google Scholar 

  198. Sutha, S, Suresh, S, Raj, B, Ravi, KR, “Transparent Alumina Based Superhydrophobic Self-cleaning Coatings for Solar Cell Cover Glass Applications.” Sol. Energy Mater. Sol. Cells, 165 128–137 (2017)

    Article  CAS  Google Scholar 

  199. Yuan, Y, Yan, GH, Huang, SH, Hong, RJ, “Preparation of Hydrophobic SiO2/PMHS Sol and ORMOSIL Antireflective Films for Solar Glass Cover.” Sol. Energy, 130 1–9 (2016)

    Article  CAS  Google Scholar 

  200. Liu, M, et al. “Transparent Superhydrophobic EVA/SiO2/PTFE/KH-570 Coating with Good Mechanical Robustness, Chemical Stability, Self-cleaning Effect and Anti-icing Property Fabricated by Facile Dipping Method.” Colloids Surf. A Physicochem. Eng. Asp., 658 130624 (2023)

    Article  CAS  Google Scholar 

  201. Gao, W, Ma, F, Yin, Y, Li, J, “Robust and Durable Transparent Superhydrophobic F-TNTs/TiN Coating Fabricated by Structure Tuning on Surface of TiN Hard Coating.” Appl. Surf. Sci., 613 155967 (2023)

    Article  CAS  Google Scholar 

  202. Zhou, Y, Liu, Y, Du, F, “Rational Fabrication of Fluorine-Free, Superhydrophobic, Durable Surface by One-Step Spray Method.” Prog. Org. Coat., 174 107227 (2023)

    Article  CAS  Google Scholar 

  203. Shi, T, Wang, H, Jia, Q, Chen, R, “Preparation of a Transparent Coating with Superamphiphobic and Antifouling Properties.” Mater. Chem. Phys., 293 126888 (2023)

    Article  CAS  Google Scholar 

  204. Li, M, et al. “Low-Cost Preparation of Durable, Transparent, Superhydrophobic Coatings with Excellent Environmental Stability and Self-cleaning Function.” Surf. Coat. Technol., 438 128367 (2022)

    Article  CAS  Google Scholar 

  205. Zhao, X, Soper, SA, Murphy, MC, “A High-Adhesion Binding Strategy for Silica Nanoparticle-Based Superhydrophobic Coatings.” Colloids Surf. A Physicochem. Eng. Asp., 625 126810 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Sun, X, Hu, K, Tu, J, Chen, K, “Design and Preparation of Superhydrophobic, Broadband and Double-Layer Antireflective Coatings.” Surf. Interfaces, 24 101135 (2021)

    Article  CAS  Google Scholar 

  207. Zhang, J, et al. “Durable Fluorinated-SiO2/Epoxy Superhydrophobic Coatings on Polycarbonate with Strong Interfacial Adhesion Enhanced by Solvent-Induced Crystallization.” Prog. Org. Coat., 150 106002 (2021)

    Article  CAS  Google Scholar 

  208. Shefiu, K, et al. “Base-Catalyzed Synthesis of Superhydrophobic and Antireflective Films for Enhanced Photoelectronic Applications.” Integr. Med. Res., 9 3958–3966 (2020)

    Google Scholar 

  209. Sriram, S, Singh, RK, Kumar, A, “Silica and Silane Based Polymer Composite Coating on Glass Slide by Dip-Coating Method.” Surf. Interfaces, 19 100472 (2020)

    Article  CAS  Google Scholar 

  210. Li, W, et al. “Broadband Antireflective and Superhydrophobic Coatings for Solar Cells.” Mater. Today Energy, 12 348–355 (2019)

    Article  Google Scholar 

  211. Siri, R, Thongrom, S, van Dommelen, P, Muensit, N, Daengngam, C, “Demonstrating Spray Deposition of Self-regulated Nanorough Layers for Stable Transparent Superhydrophobic Film Coatings.” Thin Solid Films, 686 137429 (2019)

    Article  CAS  Google Scholar 

  212. Hamdi, A, et al. “Facile Synthesis of Fluorine-Free, Hydrophobic, and Highly Transparent Coatings for Self-cleaning Applications.” J. Coat. Technol. Res., 18 807–818 (2021)

    Article  CAS  Google Scholar 

  213. Eshaghi, A, “Transparent Hard Self-cleaning Nano-Hybrid Coating on Polymeric Substrate.” Prog. Org. Coat., 128 120–126 (2019)

    Article  CAS  Google Scholar 

  214. Satapathy, M, et al. “Fabrication of Durable Porous and Non-porous Superhydrophobic LLDPE/SiO2 Nanoparticles Coatings with Excellent Self-cleaning Property.” Surf. Coat. Technol., 341 31–39 (2018)

    Article  CAS  Google Scholar 

  215. Nanda, D, Varshney, P, Satapathy, M, Mohapatra, SS, Kumar, A, “Self-assembled Monolayer of Functionalized Silica Microparticles for Self-cleaning Applications.” Colloids Surf. A Physicochem. Eng. Asp., 529 231–238 (2017)

    Article  CAS  Google Scholar 

  216. Shang, Q, Zhou, Y, “Fabrication of Transparent Superhydrophobic Porous Silica Coating for Self-cleaning and Anti-fogging.” Ceram. Int., 42 8706–8712 (2016)

    Article  CAS  Google Scholar 

  217. Biswas, D, et al. “Fabrication of Omnidirectional Broadband Dual-Functional Coating with High Optical and Self-cleaning Properties for Photovoltaic Application.” Sol. Energy, 246 36–44 (2022)

    Article  CAS  Google Scholar 

  218. Wu, J, et al. “Sol–Gel-Derived Bayberry-like SiO2@TiO2 Multifunctional Antireflective Coatings for Enhancing Photovoltaic Power Generation.” Colloids Surf. A Physicochem. Eng. Asp., 654 130173 (2022)

    Article  CAS  Google Scholar 

  219. Jacobo-Martín, A, et al. “Resilient Moth-Eye Nanoimprinted Antireflective and Self-cleaning TiO2 Sputter-Coated PMMA Films.” Appl. Surf. Sci., 585 152653 (2022)

    Article  Google Scholar 

  220. Cheng, W, et al. “Fabrication of Cu/Cu2O/CuO@WO3 Composite Films with Antireflective, Hydrophilic, and Photocatalytic Properties by Magnetron Sputtering.” Appl. Surf. Sci., 585 152714 (2022)

    Article  CAS  Google Scholar 

  221. Swathi, R, Shanthi, J, Anoop, KK, “Superhydrophilic TEOS/PF-127 Based Antireflection Coating for Solar and Optical Applications.” Opt. Mater., 118 111246 (2021)

    Article  CAS  Google Scholar 

  222. Alam, K, et al. “Fabrication of Superhydrophillic and Graded Index Antireflective Double Layer Coating for Solar Photovoltaics Module Using Aerosol Impact Deposition Assembly.” Thin Solid Films, 721 138518 (2021)

    Article  CAS  Google Scholar 

  223. Adak, D, Bhattacharyya, R, Barshilia, HC, “A State-of-the-Art Review on the Multifunctional Self-cleaning Nanostructured Coatings for PV Panels, CSP Mirrors and Related Solar Devices.” Renew. Sustain. Energy Rev. https://doi.org/10.1016/j.rser.2022.112145 (2022)

    Article  Google Scholar 

  224. Joshi, DN, Atchuta, SR, Lokeswara Reddy, Y, Naveen Kumar, A, Sakthivel, S, “Super-Hydrophilic Broadband Anti-reflective Coating with High Weather Stability for Solar and Optical Applications.” Sol. Energy Mater. Sol. Cells, 200 110023 (2019)

    Article  CAS  Google Scholar 

  225. Lei, F, et al. “Fabrication of Highly Transparent and Superhydrophilic Coatings on Glass by Modified α-Zirconium Phosphate Nanoplatelets.” Mater. Chem. Phys., 263 124377 (2021)

    Article  CAS  Google Scholar 

  226. Seifi, A, et al. “Enhanced Photocatalytic Activity of Highly Transparent Superhydrophilic Doped TiO2 Thin Films for Improving the Self-cleaning Property of Solar Panel Covers.” Ceram. Int., 49 1678–1689 (2023)

    Article  CAS  Google Scholar 

  227. Topçu Kaya, AS, Cengiz, U, “Fabrication and Application of Superhydrophilic Antifog Surface by Sol–Gel Method.” Prog. Org. Coat., 126 75–82 (2019)

    Article  Google Scholar 

  228. Du, X, et al. “Broadband Antireflective Superhydrophilic Antifogging Nano-coatings Based on Three-Layer System.” Microporous Mesoporous Mater., 255 84–93 (2018)

    Article  CAS  Google Scholar 

  229. Adachi, T, et al. “Photocatalytic, Superhydrophilic, Self-cleaning TiO2 Coating on Cheap, Light-Weight, Flexible Polycarbonate Substrates.” Appl. Surf. Sci., 458 917–923 (2018)

    Article  CAS  Google Scholar 

  230. Aghaei, R, Eshaghi, A, Aghaei, AA, “Durable Transparent Super-Hydrophilic Hollow SiO2–SiO2 Nanocomposite Thin Film.” Mater. Chem. Phys., 219 347–360 (2018)

    Article  CAS  Google Scholar 

  231. Jia, L, et al. “Graphite-Like C3N4-Coated Transparent Superhydrophilic Glass with Controllable Superwettability and High Stability.” Appl. Surf. Sci., 532 147309 (2020)

    Article  CAS  Google Scholar 

  232. Tao, C, et al. “Fabrication of Robust, Self-Cleaning, Broadband TiO2–SiO2 Double-Layer Antireflective Coatings with Closed-Pore Structure through a Surface Sol–Gel Process.” J. Alloys Compd., 747 43–49 (2018)

    Article  CAS  Google Scholar 

  233. Eshaghi, A, Mesbahi, M, Aghaei, AA, “Influence of Physical Plasma Etching Treatment on Optical and Hydrophilic MgF2 Thin Film.” Optik, 161 1–7 (2018)

    Article  CAS  Google Scholar 

  234. Nanoman Solar Coating for Improved Efficiency. https://nanoman.com.au/product/solar-coating-250ml/.

  235. Nano Coating for Solar Panels | Nano Coatings PERCENTA®. https://percenta-nanoproducts.com/nano-coating-for-solar-panels.html.

  236. nanoShell Solar PV | Solar Shield | Nanotechnology Products | NPD. https://product.statnano.com/product/7682/nanoshell-solar-pv.

  237. Self Cleaning Glass - BalcoNano. https://www.balconano.com/.

  238. High SRI Heat Reflective Summer Cool Roof Paint, IR UV Cut Heat Reflective Insulation Glass Coating, Water Repellent. https://www.xlcoatings.com/ (2023)

  239. NANOMYTE® Superhydrophobic Coatings - Water Repellent | NEI Corporation. https://www.neicorporation.com/products/coatings/superhydrophobic-coating/#tab-id-3.

  240. About | Solar Sharc. https://solarsharc.com/about/.

  241. Coatings – nanoveu. https://www.nanoveu.com/our-technology/coatings/.

  242. Khan, MZ, et al. “Outdoor Performance of Anti-soiling Coatings in Various Climates of Saudi Arabia.” Sol. Energy Mater. Sol. Cells, 235 111470 (2022)

    Article  CAS  Google Scholar 

  243. Jang, GG, et al. “Transparent Superhydrophilic and Superhydrophobic Nanoparticle Textured Coatings: Comparative Study of Anti-soiling Performance.” Nanoscale Adv., 1 1249–1260. https://doi.org/10.1039/c8na00349a (2019)

    Article  CAS  PubMed  Google Scholar 

  244. Huang, ZS, et al. “Experimental Investigation of the Anti-soiling Performances of Different Wettability of Transparent Coatings: Superhydrophilic, Hydrophilic, Hydrophobic and Superhydrophobic Coatings.” Sol. Energy Mater. Sol. Cells, 225 111053 (2021)

    Article  CAS  Google Scholar 

  245. Liu, K, et al. “Hydrophobic Anti-reflective Silica Hybrid Film with Tunable Refractive Index.” Opt. Laser Technol., 159 108998 (2023)

    Article  CAS  Google Scholar 

  246. Kim, JH, Choi, YJ, Lee, J, Lee, SG, “Highly Transparent Antireflection Coatings on Fullerene-Free Organic Solar Cells Using Polymeric Nanoparticles.” Thin Solid Films, 742 139043 (2022)

    Article  CAS  Google Scholar 

  247. Lee, H, Yi, A, Choi, JG, Ko, DH, Jung Kim, H, “Texturing of Polydimethylsiloxane Surface for Anti-reflective Films with Super-Hydrophobicity in Solar Cell Application.” Appl. Surf. Sci., 584 152625 (2022)

    Article  CAS  Google Scholar 

  248. Zhang, M, et al. “Facile Synthesis of Silica Composite Films with Good Mechanical Property for Spectrally Broadband Antireflection Coatings.” Colloids Surf. A Physicochem. Eng. Asp., 628 127255 (2021)

    Article  CAS  Google Scholar 

  249. Liu, X, Li, K, Shen, J, Gong, F, “Hot Embossing of Moth Eye-Like Nanostructure Array on Transparent Glass with Enhanced Antireflection for Solar Cells.” Ceram. Int., 47 18367–18375 (2021)

    Article  CAS  Google Scholar 

  250. Cho, E, et al. “Highly Efficient and Stable Flexible Perovskite Solar Cells Enabled by Using Plasma-Polymerized-Fluorocarbon Antireflection Layer.” Nano Energy, 82 105737 (2021)

    Article  CAS  Google Scholar 

  251. Ma, C, Wang, L, Fan, X, Liu, J, “Broadband Antireflection and Hydrophobic CaF2 Film Prepared with Magnetron Sputtering.” Appl. Surf. Sci., 560 149924 (2021)

    Article  CAS  Google Scholar 

  252. Agustín-Sáenz, C, Machado, M, Tercjak, A, “Polyfluoroalkyl-Silica Porous Coatings with High Antireflection Properties and Low Surface Free Energy for Glass in Solar Energy Application.” Appl. Surf. Sci., 509 144864 (2020)

    Article  Google Scholar 

  253. Xu, Y, et al. “Fabrication of Mesoporous Double-Layer Antireflection Coatings with Near-Neutral Color and Application in Crystalline Silicon Solar Modules.” Sol. Energy, 201 149–156 (2020)

    Article  CAS  Google Scholar 

  254. Li, D, et al. “Novel-Type Nanostructured SiO2 Antireflection Coatings and Their Application in Cu(In, Ga)Se2 Solar Cells.” Mater. Chem. Phys., 165 97–102 (2015)

    Article  CAS  Google Scholar 

  255. Adak, D, Bhattacharyya, R, Saha, H, Maiti, PS, “Sol–Gel Processed Silica Based Highly Transparent Self-Cleaning Coatings for Solar Glass Covers.” Mater. Today Proc., 33 2429–2433 (2020)

    Article  CAS  Google Scholar 

  256. Jeffrey Brinker, C, Hurd, AJ, “Fundamentals of Sol–Gel Dip-Coating.” J. Phys., III (4) 1231–1242 (1994)

    Google Scholar 

  257. Li, Y, et al. “Preparation of Mechanically Stable Triple-Layer Interference Broadband Antireflective Coatings with Self-cleaning Property by Sol–Gel Technique.” RSC Adv., 7 14660–14668 (2017)

    Article  CAS  Google Scholar 

  258. Raut, HK, Ganesh, VA, Nair, AS, Ramakrishna, S, “Anti-reflective Coatings: A Critical, In-Depth Review.” Energy Environ. Sci., 4 3779–3804 (2011)

    Article  CAS  Google Scholar 

  259. Wu, X, et al. “Preparation of Superamphiphobic Polymer-Based Coatings via Spray- and Dip-Coating Strategies.” Prog. Org. Coat., 90 463–471 (2016)

    Article  CAS  Google Scholar 

  260. Wang, S-D, Wang, J-Y, “Anti-reflective and Superhydrophobic Films Prepared from a Sol at Different Withdrawal Speeds.” Appl. Surf. Sci., 476 1035–1048 (2019)

    Article  CAS  Google Scholar 

  261. Biswas, PK, et al. “Porous Anti-reflective Silica Coatings with a High Spectral Coverage by Sol–Gel Spin Coating Technique.” J. Mater. Sci. Lett., 22 181–183 (2003)

    Article  CAS  Google Scholar 

  262. Nisticò, R, Scalarone, D, Magnacca, G, “Sol–Gel Chemistry, Templating and Spin-Coating Deposition: A Combined Approach to Control in a Simple Way the Porosity of Inorganic Thin Films/Coatings.” Microporous Mesoporous Mater., 248 18–29 (2017)

    Article  Google Scholar 

  263. Nomeir, B, Lakhouil, S, Boukheir, S, Ali, MA, Naamane, S, “Recent Progress on Transparent and Self-cleaning Surfaces by Superhydrophobic Coatings Deposition to Optimize the Cleaning Process of Solar Panels.” Sol. Energy Mater. Sol. Cells, 257 112347 (2023)

    Article  CAS  Google Scholar 

  264. Frey, H, “Chemical Vapor Deposition (CVD).” Handbook of Thin-Film Technolnologyhttps://doi.org/10.1007/978-3-642-05430-3_9 (2015)

    Article  Google Scholar 

  265. Jatoi, AS, et al. “Conventional Techniques for Nanomaterials Preparation.” Sustain. Nanotechnol. Environ. Remediat. https://doi.org/10.1016/B978-0-12-824547-7.00001-1 (2022)

    Article  Google Scholar 

  266. Zhuang, A, et al. “Transparent Superhydrophobic PTFE Films via One-Step Aerosol Assisted Chemical Vapor Deposition.” RSC Adv., 7 29275–29283 (2017)

    Article  CAS  Google Scholar 

  267. Lin, SS, Huang, JL, Šjgalik, P, “The Properties of Ti-Doped ZnO Films Deposited by Simultaneous RF and DC Magnetron Sputtering.” Surf. Coat. Technol., 191 286–292 (2005)

    Article  CAS  Google Scholar 

  268. Seong, SG, Kim, EJ, Kim, YS, Lee, KE, Hahn, SH, “Influence of Deposition Atmosphere on Photocatalytic Activity of TiO2/SiOx Double-Layers Prepared by RF Magnetron Sputtering.” Appl. Surf. Sci., 256 1–5 (2009)

    Article  CAS  Google Scholar 

  269. Ellmer, K, Cebulla, R, Wendt, R, “Transparent and Conducting ZnO(:Al) Films Deposited by Simultaneous RF- and DC-Excitation of a Magnetron.” Thin Solid Films, 317 413–416 (1998)

    Article  CAS  Google Scholar 

  270. Zuo, Z, Gao, J, Liao, R, Zhao, X, Yuan, Y, “A Novel and Facile Way to Fabricate Transparent Superhydrophobic Film on Glass with Self-cleaning and Stability.” Mater. Lett., 239 48–51 (2019)

    Article  CAS  Google Scholar 

  271. Sumanth Kumar, D, Jai Kumar, B, Mahesh, HM, “Quantum Nanostructures (QDs): An Overview.” In: Synthesis of Inorganic Nanomaterials, 59–88. Elsevier (2018). https://doi.org/10.1016/B978-0-08-101975-7.00003-8

  272. Patil, PS, “Versatility of Chemical Spray Pyrolysis Technique.” Mater. Chem. Phys., 59 185–198 (1999)

    Article  CAS  Google Scholar 

  273. Jung, DS, Park, SB, Kang, YC, “Design of Particles by Spray Pyrolysis and Recent Progress in Its Application.” Korean J. Chem. Eng., 27 1621–1645 (2010)

    Article  CAS  Google Scholar 

  274. Mooney, JB, Radding, SB, “Spray Pyrolysis Processing.” Annu. Rev. Mater. Sci., 12 81–101 (1982)

    Article  CAS  Google Scholar 

  275. Tarwal, NL, Patil, PS, “Superhydrophobic and Transparent ZnO Thin Films Synthesized by Spray Pyrolysis Technique.” Appl. Surf. Sci., 256 7451–7456 (2010)

    Article  CAS  Google Scholar 

Download references

Funding

The authors did not receive any financial support from any organization to carry out the present review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simanchal Kar.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of financial interest for this study’s investigation, authorship, and publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajbahadur, Y.N.K., Kumar, A., Negi, S. et al. Evaluation of hydrophobic/hydrophilic and antireflective coatings for photovoltaic panels. J Coat Technol Res (2024). https://doi.org/10.1007/s11998-024-00929-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11998-024-00929-0

Keywords

Navigation