Skip to main content
Log in

Advances in emerging hydrogel fouling-release coatings for marine applications

  • Review Article
  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

The accumulation of microorganisms, algae, mussels, and barnacles on the hull of sea vessels leads to biofouling, surface corrosion, and increased drag as the vessel moves through water costing the marine industry around $15 billion/year. Current commercial traditional antifouling coatings suffer from reduced energy efficiency and short lifespan and contain heavy metals that are toxic to marine organisms and humans. The banning of these coatings is due to environmental concerns, and nonbiocidal alternatives such as polymer-based coatings are being sought after. This review demonstrates emerging promises of hydrogel fouling-release coatings (FRCs) in the marine environment that may be effective against a prevalent amount of biofouling agents. The review also highlights the importance of polymer backbone materials with surface wettability characteristics possessing hydrophobic, hydrophilic, and zwitterionic properties and further discusses emerging antifouling techniques, synthesis of hydrogel, swelling behavior of hydrogel, laboratory assays of hydrogel coating, marine field test, and outlook of hydrogel fouling-release (FRCs) coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Selim, MS, Shenashen, MA, El-Safty, SA, Higazy, SA, Selim, MM, Isago, H, Elmarakbi, A, “Recent Progress in Marine Foul-Release Polymeric Nanocomposite Coatings.” Prog. Mater. Sci., 87 1–32 (2017)

    Article  CAS  Google Scholar 

  2. Telegdi, J, Trif, L, Románszki, L, “Smart Anti-biofouling Composite Coatings for Naval Applications.” In: Smart Composite Coatings and Membranes, pp. 123–155. Woodhead Publishing, Sawston (2016)

    Chapter  Google Scholar 

  3. Yebra, DM, Kiil, S, Dam-Johansen, K, “Antifouling Technology—Past, Present and Future Steps Towards Efficient and Environmentally Friendly Antifouling Coatings.” Prog. Org. Coat., 50 (2) 75–104 (2004)

    Article  CAS  Google Scholar 

  4. Jin, H, Tian, L, Bing, W, Zhao, J, Ren, L, “Toward the Application of Graphene for Combating Marine Biofouling.” Adv. Sustain. Syst., 5 (1) 2000076 (2021)

    Article  CAS  Google Scholar 

  5. Tian, L, Yin, Y, Jin, H, Bing, W, Jin, E, Zhao, J, Ren, L, “Novel Marine Antifouling Coatings Inspired by Corals.” Mater. Today Chem., 17 100294 (2020)

    Article  CAS  Google Scholar 

  6. Hu, P, Xie, Q, Ma, C, Zhang, G, “Silicone-based Fouling-Release Coatings for Marine Antifouling.” Langmuir, 36 (9) 2170–2183 (2020)

    Article  CAS  PubMed  Google Scholar 

  7. Schultz, MP, “Effects of Coating Roughness and Biofouling on Ship Resistance and Powering.” Biofouling, 23 (5) 331–341 (2007)

    Article  MathSciNet  PubMed  Google Scholar 

  8. Galil, BS, Marchini, A, Occhipinti-Ambrogi, A, “Mare Nostrum, Mare Quod Invaditur—The History of Bioinvasions in the Mediterranean Sea.” In: Histories of Bioinvasions in the Mediterranean, pp. 21–49. Springer, Cham (2018)

    Chapter  Google Scholar 

  9. Schultz, MP, Walker, JM, Steppe, CN, Flack, KA, “Impact of Diatomaceous Biofilms on the Frictional Drag of Fouling-Release Coatings.” Biofouling, 31 (9–10) 759–773 (2015)

    Article  CAS  PubMed  Google Scholar 

  10. Townsin, RL, “The Ship Hull Fouling Penalty.” Biofouling, 19 (S1) 9–15 (2003)

    Article  PubMed  Google Scholar 

  11. Hellio, C, Yebra, D, Advances in Marine Antifouling Coatings and Technologies. Elsevier, Amsterdam (2009)

    Book  Google Scholar 

  12. Melo, LF, Pinheiro, MM, “Biofouling in Heat Exchangers.” In: Biofilms—Science and Technology, pp. 499–509. Springer, Dordrecht (1992)

    Chapter  Google Scholar 

  13. Railkin, AI, Marine Biofouling: Colonization Processes and Defenses. CRC Press, Boca Raton (2003)

    Book  Google Scholar 

  14. Copisarow, M, “Marine Fouling and Its Prevention.” Science, 101 (2625) 406–407 (1945)

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Lebret, K, Thabard, M, Hellio, C, “Algae as Marine Fouling Organisms: Adhesion Damage and Prevention.” In: Advances in Marine Antifouling Coatings and Technologies, pp. 80–112. Woodhead Publishing, Sawston (2009)

    Chapter  Google Scholar 

  16. Xie, Q, Pan, J, Ma, C, Zhang, G, “Dynamic Surface Antifouling: Mechanism and Systems.” Soft Matter, 15 (6) 1087–1107 (2019)

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Dobretsov, S, Thomason, JC, “The Development of Marine Biofilms on Two Commercial Non-Biocidal Coatings: A Comparison Between Silicone and Fluoropolymer Technologies.” Biofouling, 27 (8) 869–880 (2011)

    Article  CAS  PubMed  Google Scholar 

  18. Lewin, R, “Microbial Adhesion is a Sticky Problem: A Greater Understanding of the Mechanisms by Which Microorganisms Form Layers is Needed, Both for Prevention and Manipulation.” Science, 224 (4647) 375–377 (1984)

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Urzì, C, De Leo, F, “Sampling with Adhesive Tape Strips: An Easy and Rapid Method to Monitor Microbial Colonization on Monument Surfaces.” J Microbiol. Methods, 44 1–11 (2001)

    Article  PubMed  Google Scholar 

  20. Chobba, MB, Weththimuni, ML, Messaoud, M, Urzì, C, Bouaziz, J, De Leo, F, Licchelli, M, “Ag-TiO2/PDMS Nanocomposite Protective Coatings: Synthesis, Characterization, and use as a Self-cleaning and Antimicrobial Agent.” Prog. Org. Coat., 158 106342 (2021)

    Article  CAS  Google Scholar 

  21. Ghabooli, S, Shiganova, TA, Briski, E, Piraino, S, Fuentes, V, Thibault-Botha, D, Angel, DL, Cristescu, ME, MacIsaac, HJ, “Invasion Pathway of the Ctenophore Mnemiopsis leidyi in the Mediterranean Sea.” PLoS One, 8 (11) e81067 (2013)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  22. Çinar, ME, Arianoutsou, M, Zenetos, A, Golani, D, “Impacts of Invasive Alien Marine Species on Ecosystem Services and Biodiversity: A Pan-European Review.” Aquat. Invasions, 9 (4) 391–423 (2014)

    Article  Google Scholar 

  23. Beshai, RA, Truong, DA, Henry, AK, Sorte, CJ, “Biotic Resistance or Invasional Meltdown? Diversity Reduces Invasibility but Not Exotic Dominance in Southern California Epibenthic Communities.” Biol. Invasions, 25 1–17 (2022)

    Google Scholar 

  24. de Oliveira, FF, Schneider, RP, “Slow Sand Filtration for Biofouling Reduction in Seawater Desalination by Reverse Osmosis.” Water Res., 155 474–486 (2019)

    Article  Google Scholar 

  25. Romero-López, GE, Alvarez-Sánchez, J, Santos-Villalobos, SDL, Fimbres-Weihs, GA, “Biofouling Studies on thin Film Composite Membranes for Reverse Osmosis Desalination Processes.” In: Membranes, pp. 99–104. Springer, Cham (2017)

    Chapter  Google Scholar 

  26. Mepc, R, “Guidelines for the Control and Management of Ships’ Biofouling to Minimize the Transfer of Invasive Aquatic Species.” Mepc, 62 24 (2011)

    Google Scholar 

  27. Gill, GA, Kuo, LJ, Janke, CJ, Park, J, Jeters, RT, Bonheyo, GT, Pan, HB, Wai, C, Khangaonkar, T, Bianucci, L, Wood, JR, “The Uranium from Seawater Program at the Pacific Northwest National Laboratory: Overview of Marine Testing, Adsorbent Characterization, Adsorbent Durability, Adsorbent Toxicity, and Deployment Studies.” Ind. Eng. Chem. Res., 55 (15) 4264–4277 (2016)

    Article  CAS  Google Scholar 

  28. Ali, A, Jamil, MI, Jiang, J, Shoaib, M, Amin, BU, Luo, S, Zhan, X, Chen, F, Zhang, Q, “An Overview of Controlled-Biocide-Release Coating Based on Polymer Resin for Marine Antifouling Applications.” J. Polym. Res., 27 1–17 (2020)

    Article  Google Scholar 

  29. Park, KD, Kim, YS, Han, DK, Kim, YH, Lee, EHB, Suh, H, Choi, KS, “Bacterial Adhesion on PEG Modified Polyurethane Surfaces.” Biomaterials, 19 (7–9) 851–859 (1998)

    Article  CAS  PubMed  Google Scholar 

  30. Costerton, JW, Stewart, PS, Greenberg, EP, “Bacterial Biofilms: A Common Cause of Persistent Infections.” Science, 284 (5418) 1318–1322 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Roosjen, A, van der Mei, HC, Busscher, HJ, Norde, W, “Microbial Adhesion to Poly(ethylene oxide) Brushes: Influence of Polymer Chain Length and Temperature.” Langmuir, 20 (25) 10949–10955 (2004)

    Article  CAS  PubMed  Google Scholar 

  32. Bixler, GD, Theiss, A, Bhushan, B, Lee, SC, “Anti-fouling Properties of Microstructured Surfaces Bio-inspired by Rice Leaves and Butterfly Wings.” J. Colloid Interface Sci., 419 114–133 (2014)

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Lewthwaite, JC, Molland, AF, Thomas, KW, “An Investigation into the Variation of Ship Skin Frictional Resistance with Fouling.” R. Inst. Naval Archit. Trans. 127 (1985)

  34. Mishra, R, Panda, AK, De Mandal, S, Shakeel, M, Bisht, SS, Khan, J, “Natural Anti-biofilm Agents: Strategies to Control Biofilm-Forming Pathogens.” Front. Microbiol., 11 566325 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  35. Nurioglu, AG, Esteves, ACC, “Non-toxic, Non-Biocide-Release Antifouling Coatings Based on Molecular Structure Design for Marine Applications.” J. Mater. Chem. B, 3 (32) 6547–6570 (2015)

    Article  CAS  PubMed  Google Scholar 

  36. Silva, ER, Ferreira, O, Ramalho, PA, Azevedo, NF, Bayón, R, Igartua, A, Bordado, JC, Calhorda, MJ, “Eco-Friendly Non-Biocide-Release Coatings for Marine Biofouling Prevention.” Sci. Total Environ., 650 2499–2511 (2019)

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Michailidis, M, Gutner-Hoch, E, Wengier, R, Onderwater, R, D’Sa, RA, Benayahu, Y, Semenov, A, Vinokurov, V, Shchukin, D, “Highly Effective Functionalized Coatings with Antibacterial and Antifouling Properties.” ACS Sustain. Chem. Eng., 8 (24) 8928–8937 (2020)

    Article  CAS  Google Scholar 

  38. Fusetani, N, “Antifouling Marine Natural Products.” Nat. Prod. Rep., 28 (2) 400–410 (2011)

    Article  CAS  PubMed  Google Scholar 

  39. de Carvalho, CCCR, “Biofilms: New Ideas for an Old Problem.” Recent Pat. Biotechnol., 6 (1) 13–22 (2012)

    Article  PubMed  Google Scholar 

  40. Dobretsov, S, Abed, RM, Teplitski, M, “Mini-review: Inhibition of Biofouling by Marine Microorganisms.” Biofouling, 29 (4) 423–441 (2013)

    Article  CAS  PubMed  Google Scholar 

  41. Kristensen, JB, Meyer, RL, Laursen, BS, Shipovskov, S, Besenbacher, F, Poulsen, CH, “Antifouling Enzymes and the Biochemistry of Marine Settlement.” Biotechnol. Adv., 26 (5) 471–481 (2008)

    Article  CAS  PubMed  Google Scholar 

  42. Li, Z, Guo, Z, “Bioinspired Surfaces with Wettability for Antifouling Application.” Nanoscale, 11 (47) 22636–22663 (2019)

    Article  CAS  PubMed  Google Scholar 

  43. Selim, MS, Yang, H, Wang, FQ, Fatthallah, NA, Li, X, Li, Y, Huang, Y, “Superhydrophobic Silicone/SiC Nanowire Composite as a Fouling Release Coating Material.” J. Coat. Technol. Res., 16 (4) 1165–1180 (2019)

    Article  CAS  Google Scholar 

  44. Batista, RM, Castro, IB, Fillmann, G, “Imposex and Butyltin Contamination Still Evident in Chile After TBT Global Ban.” Sci. Total Environ., 566 446–453 (2016)

    Article  ADS  PubMed  Google Scholar 

  45. Jin, H, Bing, W, Tian, L, Wang, P, Zhao, J, “Combined Effects of Color and Elastic Modulus on Antifouling Performance: A Study of Graphene Oxide/Silicone Rubber Composite Membranes.” Materials, 12 (16) 2608 (2019)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hunsucker, KZ, Koka, A, Lund, G, Swain, G, “Diatom Community Structure on In-service Cruise Ship Hulls.” Biofouling, 30 (9) 1133–1140 (2014)

    Article  CAS  PubMed  Google Scholar 

  47. Zargiel, KA, Swain, GW, “Static vs Dynamic Settlement and Adhesion of Diatoms to Ship Hull Coatings.” Biofouling, 30 (1) 115–129 (2014)

    Article  PubMed  Google Scholar 

  48. Van Mooy, BA, Hmelo, LR, Fredricks, HF, Ossolinski, JE, Pedler, BE, Bogorff, DJ, Smith, PJ, “Quantitative Exploration of the Contribution of Settlement, Growth, Dispersal and Grazing to the Accumulation of Natural Marine Biofilms on Antifouling And Fouling-Release Coatings.” Biofouling, 30 (2) 223–236 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  49. Muthukrishnan, T, Abed, RM, Dobretsov, S, Kidd, B, Finnie, AA, “Long-term Microfouling on Commercial Biocidal Fouling Control Coatings.” Biofouling, 30 (10) 1155–1164 (2014)

    Article  CAS  PubMed  Google Scholar 

  50. Gerigk, U, Schneider, U, Stewen, U, “The Present Status of TBT Copolymer Antifouling Paints versus TBT-free Technology.” Div. Environ. Chem. Prepr Ext. Abstr., 38 91–94 (1998)

    CAS  Google Scholar 

  51. Lejars, M, Margaillan, A, Bressy, C, “Fouling Release Coatings: A Nontoxic Alternative to Biocidal Antifouling Coatings.” Chem. Rev., 112 (8) 4347–4390 (2012)

    Article  CAS  PubMed  Google Scholar 

  52. Deyab, MA, “Anticorrosion Properties of Nanocomposites Coatings: A Critical Review.” J. Mol. Liq., 313 113533 (2020)

    Article  CAS  Google Scholar 

  53. Selim, MS, El-Safty, SA, Shenashen, MA, Higazy, SA, Elmarakbi, A, “Progress in Biomimetic Leverages for Marine Antifouling Using Nanocomposite Coatings.” J. Mater. Chem. B, 8 (17) 3701–3732 (2020)

    Article  CAS  PubMed  Google Scholar 

  54. Jin, H, Tian, L, Bing, W, Zhao, J, Ren, L, “Bioinspired Marine Antifouling Coatings: Status, Prospects, and Future.” Prog. Mater. Sci., 124 100889 (2022)

    Article  CAS  Google Scholar 

  55. Banerjee, I, Pangule, RC, Kane, RS, “Antifouling Coatings: Recent Developments in the Design of Surfaces that Prevent Fouling by Proteins, Bacteria, and Marine Organisms.” Adv. Mater., 23 (6) 690–718 (2011)

    Article  CAS  PubMed  Google Scholar 

  56. Sousa-Cardoso, F, Teixeira-Santos, R, Mergulhão, FJ, “Antifouling Performance of Carbon-Based Coatings for Marine Applications: A Systematic Review.” Antibiotics, 11 (8) 1102 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. He, Z, Lan, X, Hu, Q, Li, H, Li, L, Mao, J, “Antifouling Strategies Based on Super-Phobic Polymer Materials.” Prog. Org. Coat., 157 106285 (2021)

    Article  CAS  Google Scholar 

  58. Almeida, E, Diamantino, TC, de Sousa, O, “Marine Paints: The Particular Case of Antifouling Paints.” Prog. Org. Coat., 59 (1) 2–20 (2007)

    Article  CAS  Google Scholar 

  59. Magin, CM, Cooper, SP, Brennan, AB, “Non-toxic Antifouling Strategies.” Mater. Today., 13 (4) 36–44 (2010)

    Article  CAS  Google Scholar 

  60. Nurioglu, AG, Catarina, A, Esteves, C, “Non-toxic, Non-biocide-Release Antifouling Coatings Based on Molecular Structure Design for Marine Applications.” J. Mater. Chem. B, 3 (32) 6547–6570 (2015)

    Article  CAS  PubMed  Google Scholar 

  61. Buskens, P, Wouters, M, Rentrop, C, Vroon, Z, “A Brief Review of Environmentally Benign Antifouling and Foul-release Coatings for Marine Applications.” J. Coat. Technol. Res., 10 (1) 29–36 (2013)

    Article  CAS  Google Scholar 

  62. Gittens, JE, Smith, TJ, Suleiman, R, Akid, R, “Current and Emerging Environmentally Friendly Systems for Fouling Control in the Marine Environment.” Biotechnol. Adv., 31 (8) 1738–1753 (2013)

    Article  CAS  PubMed  Google Scholar 

  63. Zhang, H, Chiao, M, “Anti-Fouling Coatings of Poly(dimethylsiloxane) Devices for Biological and Biomedical Applications.” J. Med. Biol. Eng., 35 (2) 143–155 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  64. Yang, H, Chang, H, Zhang, Q, Song, Y, Jiang, L, Jiang, Q, Xue, X, Huang, W, Ma, C, Jiang, B, “Highly Branched Copolymers with Degradable Bridges for Antifouling Coatings.” ACS Appl. Mater. Interfaces, 12 (14) 16849–16855 (2020)

    Article  CAS  PubMed  Google Scholar 

  65. Zhao, X, Zhang, R, Liu, Y, He, M, Su, Y, Gao, C, Jiang, Z, “Antifouling Membrane Surface Construction: Chemistry Plays a Critical Role.” J. Membr. Sci., 551 145–171 (2018)

    Article  CAS  Google Scholar 

  66. Krishnan, S, Weinman, CJ, Ober, CK, “Advances in Polymers for Anti-biofouling Surfaces.” J. Mater. Chem., 18 (29) 3405–3413 (2008)

    Article  CAS  Google Scholar 

  67. Miura, Y, “Controlled Polymerization for the Development of Bioconjugate Polymers and Materials.” J. Mater. Chem. B, 8 (10) 2010–2019 (2020)

    Article  CAS  PubMed  Google Scholar 

  68. Rana, D, Matsuura, T, “Surface Modifications for Antifouling Membranes.” Chem. Rev., 110 (4) 2448–2471 (2010)

    Article  CAS  PubMed  Google Scholar 

  69. Gestwicki, JE, Kiessling, LL, “Inter-receptor Communication Through Arrays of Bacterial Chemoreceptors.” Nature, 415 (6867) 81–84 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  70. Carl, C, Poole, AJ, Sexton, BA, Glenn, FL, Vucko, MJ, Williams, MR, Whalan, S, de Nys, R, “Enhancing the Settlement and Attachment Strength of Pediveligers of Mytilus galloprovincialis Bychanging Surface Wettability and Microtopography.” Biofouling, 28 (2) 175–186 (2012)

    Article  CAS  PubMed  Google Scholar 

  71. Kaffashi, A, Jannesari, A, Ranjbar, Z, “Silicone Fouling-release Coatings: Effects of the Molecular Weight of Poly(dimethylsiloxane) and Tetraethyl Orthosilicate on the Magnitude of Pseudobarnacle Adhesion Strength.” Biofouling, 28 (7) 729–741 (2012)

    Article  CAS  PubMed  Google Scholar 

  72. Baker, TJ, Tyler, CR, Galloway, TS, “Impacts of Metal and Metal Oxide Nanoparticles on Marine Organisms.” Environ. Pollut., 186 257–271 (2014)

    Article  CAS  PubMed  Google Scholar 

  73. Marmur, A, “Super-hydrophobicity Fundamentals: Implications to Biofouling Prevention.” Biofouling, 22 (02) 107–115 (2006)

    Article  CAS  PubMed  Google Scholar 

  74. Genzer, J, Efimenko, K, “Recent Developments in Superhydrophobic Surfaces and Their Relevance to Marine Fouling: A Review.” Biofouling, 22 (5) 339–360 (2006)

    Article  CAS  PubMed  Google Scholar 

  75. Miller, RJ, Adeleye, AS, Page, HM, Kui, L, Lenihan, HS, Keller, AA, “Nano and Traditional Copper and Zinc Antifouling Coatings: Metal Release and Impact on Marine Sessile Invertebrate Communities.” J. Nanopart. Res., 22 1–15 (2020)

    Article  Google Scholar 

  76. Kiil, S, Weinell, CE, Pedersen, MS, Dam-Johansen, K, “Analysis of Self-polishing Antifouling Paints using Rotary Experiments and Mathematical Modeling.” Ind. Eng. Chem. Res., 40 (18) 3906–3920 (2001)

    Article  CAS  Google Scholar 

  77. Srinivasan, M, Swain, GW, “Managing the Use of Copper-Based Antifouling Paints.” Environ. Manag., 39 (3) 423–441 (2007)

    Article  ADS  Google Scholar 

  78. Stein, J, Truby, K, Wood, CD, Stein, J, Gardner, M, Swain, G, Kavanagh, C, Kovach, B, Schultz, M, Wiebe, D, Holm, E, “Silicone Foul Release Coatings: Effect of the Interaction of Oil and Coating Functionalities on the Magnitude of Macrofouling Attachment Strengths.” Biofouling, 19 (S1) 71–82 (2003)

    Article  CAS  PubMed  Google Scholar 

  79. Chromy, L, Uhacz, K, “Antifouling Paints Based on Organotin Compounds. Leaching of Organotin Toxins from Paint Films.” J. Oil Colour Chem. Assoc., 61 (1978)

  80. Batista-Andrade, JA, Caldas, SS, Batista, RM, Castro, IB, Fillmann, G, Primel, EG, “From TBT to Booster Biocides: Levels and Impacts of Antifouling Along Coastal Areas of Panama.” Environ. Pollut., 234 243–252 (2018)

    Article  CAS  PubMed  Google Scholar 

  81. Jin, H, Zhang, T, Bing, W, Dong, S, Tian, L, “Antifouling Performance and Mechanism of Elastic Graphene–Silicone Rubber Composite Membranes.” J. Mater. Chem. B, 7 (3) 488–497 (2019)

    Article  CAS  PubMed  Google Scholar 

  82. Montemarano, JA, Dyckman, EJ, "Performance of Organometallic Polymers as Anti-fouling Materials." (1975)

  83. Antizar-Ladislao, B, “Environmental Levels, Toxicity and Human Exposure to Tributyltin (TBT)-Contaminated Marine Environment. A Review.” Environ. Int., 34 (2) 292–308 (2008)

    Article  CAS  PubMed  Google Scholar 

  84. Evans, SM, Leksono, T, McKinnell, PD, “Tributyltin Pollution: A Diminishing Problem Following Legislation Limiting the Use of TBT-based Anti-Fouling Paints.” Marine Pollut. Bull., 30 (1) 14–21 (1995)

    Article  CAS  Google Scholar 

  85. Schultz, MP, Bendick, JA, Holm, ER, Hertel, WM, “Economic Impact of Biofouling on a Naval Surface Ship.” Biofouling, 27 (1) 87–98 (2011)

    Article  CAS  PubMed  Google Scholar 

  86. Champ, MA, “A Review of Organotin Regulatory Strategies, Pending Actions, Related Costs and Benefits.” Sci. Total Environ., 258 (1–2) 21–71 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  87. Champ, MA, "The Status of the Treaty to Ban TBT in Marine Antifouling Paints and Alternatives." Proceedings of the 24th UJNR (US/Japan) Marine Facilities Panel Meeting, Hawaii, (2001)

  88. Van Londen, AM, “A Study of Ship Bottom Paints, in Particular Pertaining to the Behaviour and Action of Anti-fouling Paints.” Technische Hogeschool Delft, Afdeling Scheepsbouwkunde, Nederlands, Scheepsstudiecentrum, TNO, Report No 54 C (1963)

  89. Jones, FN, Nichols, ME, Pappas, SP, Organic Coatings: Science and Technology. Wiley, London (2017)

    Book  Google Scholar 

  90. Walker, P, “Organo Silanes as Adhesion Promoters for Organic Coatings.” (1980)

  91. Kroustein, M, Organolead Elastomeric Coatings. Chem. Depart, Manhattan College Bronx, New York (1973)

    Google Scholar 

  92. Damodaran, VB, Murthy, NS, “Bio-inspired Strategies for Designing Antifouling Biomaterials.” Biomater. Res., 20 1–11 (2016)

    Article  Google Scholar 

  93. Ahmad, AL, Che Lah, NF, Ismail, S, Ooi, BS, “Membrane Antifouling Methods and Alternatives: Ultrasound Approach.” Sep. Purif. Rev., 41 (4) 318–346 (2012)

    Article  Google Scholar 

  94. Hay, ME, “Marine Chemical Ecology: What’s Known and What’s Next?” J. Exp. Marine Biol. Ecol., 200 (1–2) 103–134 (1996)

    Article  CAS  Google Scholar 

  95. Brady, RF, “Clean Hulls Without Poisons: Devising and Testing Nontoxic Marine Coatings.” J. Coat. Technol., 72 (900) 45–56 (2000)

    Article  Google Scholar 

  96. Zumbusch, P, Kulcke, W, Brunner, G, “Use of Alternating Electrical Fields as Anti-fouling Strategy in Ultrafiltration of Biological Suspensions–Introduction of a New Experimental Procedure for Crossflow Filtration.” J. Membr. Sci., 142 (1) 75–86 (1998)

    Article  CAS  Google Scholar 

  97. Schultz, MP, Kavanagh, CJ, Swain, GW, “Hydrodynamic Forces on Barnacles: Implications on Detachment from Fouling-release Surfaces.” Biofouling, 13 (4) 323–335 (1999)

    Article  CAS  Google Scholar 

  98. Kerr, A, Hodgkiess, T, Cowling, MJ, Beveridge, CM, Smith, MJ, Parr, ACS, “A Novel Technique to Prevent Bacterial Fouling, Using Imposed Surface Potential.” J. Appl. Microbiol., 85 (6) 1067–1072 (1998)

    Article  Google Scholar 

  99. Matsunaga, T, Lim, TK, “Electrochemical Prevention of Biofouling.” Electrochemistry, 68 (11) 847-852.41 (2000)

    Article  CAS  Google Scholar 

  100. Bidwell, JR, Cherry, DS, Farris, JL, Petrille, JC, Lyons, LA, “Effects of Intermittent Halogenation on Settlement, Survival and Growth of the Zebra Mussel, Dreissena polymorpha.” Hydrobiologia, 394 53–62 (1999)

    Article  CAS  Google Scholar 

  101. Spears, LG, Stone, JH, Klein, E, “Electrolysis of Copper Screening: A Technique for the Prevention of Marine Fouling.” Environ. Sci. Technol., 3 (6) 576–580 (1969)

    Article  ADS  CAS  Google Scholar 

  102. Wang, XH, Li, J, Zhang, JY, Sun, ZC, Yu, L, Jing, XB, Sun, ZX, Ye, ZJ, “Polyaniline as Marine Antifouling and Corrosion-Prevention Agent.” Synthetic Metals, 102 (1–3) 1377–1380 (1999)

    Article  CAS  Google Scholar 

  103. Truby, K, Wood, C, Stein, J, Cella, J, Carpenter, J, Kavanagh, C, Swain, G, Wiebe, D, Lapota, D, Meyer, A, Holm, E, “Evaluation of the Performance Enhancement of Silicone Biofouling-Release Coatings by Oil Incorporation.” Biofouling, 15 (1–3) 141–150 (2000)

    Article  CAS  PubMed  Google Scholar 

  104. Nendza, M, “Hazard Assessment of Silicone Oils (Polydimethylsiloxanes, PDMS) Used in Antifouling-/foul-release-products in the Marine Environment.” Marine Pollut. Bull., 54 (8) 1190–1196 (2007)

    Article  CAS  Google Scholar 

  105. Ekin, A, Webster, DC, Daniels, JW, Stafslien, SJ, Cassé, F, Callow, JA, Callow, ME, “Synthesis, Formulation, and Characterization of Siloxane–polyurethane Coatings for Underwater Marine Applications using Combinatorial High-throughput Experimentation.” J. Coat. Technol. Res., 4 (4) 435–451 (2007)

    Article  CAS  Google Scholar 

  106. Cavas, L, Yildiz, PG, Mimigianni, P, Sapalidis, A, Nitodas, S, “Reinforcement Effects of Multiwall Carbon Nanotubes and Graphene Oxide on PDMS Marine Coatings.” J. Coat. Technol. Res., 15 (1) 105–120 (2018)

    Article  CAS  Google Scholar 

  107. Verma, S, Mohanty, S, Nayak, SK, “Preparation of Hydrophobic Epoxy–polydimethylsiloxane–graphene Oxide Nanocomposite Coatings for Antifouling Application.” Soft Matter, 16 (5) 1211–1226 (2020)

    Article  ADS  CAS  PubMed  Google Scholar 

  108. Liu, C, Xie, Q, Ma, C, Zhang, G, “Fouling Release Property of Polydimethylsiloxane-Based Polyurea with Improved Adhesion to Substrate.” Ind. Eng. Chem. Res., 55 (23) 6671–6676 (2016)

    Article  CAS  Google Scholar 

  109. Pollack, KA, Imbesi, PM, Raymond, JE, Wooley, KL, “Hyperbranched Fluoropolymer-polydimethylsiloxane-poly(ethylene glycol) Cross-linked Terpolymer Networks Designed for Marine and Biomedical Applications: Heterogeneous Nontoxic Antibiofouling Surfaces.” ACS Appl. Mater. Interfaces, 6 (21) 19265–19274 (2014)

    Article  CAS  PubMed  Google Scholar 

  110. Wang, Y, Betts, DE, Finlay, JA, Brewer, L, Callow, ME, Callow, JA, Wendt, DE, DeSimone, JM, “Photocurable Amphiphilic Perfluoropolyether/Poly(ethylene glycol) Networks for Fouling-Release Coatings.” Macromolecules, 44 (4) 878–885 (2011)

    Article  ADS  CAS  Google Scholar 

  111. Krishnan, S, Ayothi, R, Hexemer, A, Finlay, JA, Sohn, KE, Perry, R, Ober, CK, Kramer, EJ, Callow, ME, Callow, JA, Fischer, DA, “Anti-biofouling Properties of Comblike Block Copolymers with Amphiphilic Side Chains.” Langmuir, 22 (11) 5075–5086 (2006)

    Article  CAS  PubMed  Google Scholar 

  112. Gudipati, CS, Finlay, JA, Callow, JA, Callow, ME, Wooley, KL, “The Antifouling and Fouling-release Perfomance of Hyperbranched Fluoropolymer (HBFP)−Poly (ethylene glycol) (PEG) Composite Coatings Evaluated by Adsorption of Biomacromolecules and the Green Fouling Alga Ulva.” Langmuir, 21 (7) 3044–3053 (2005)

    Article  CAS  PubMed  Google Scholar 

  113. Weinman, CJ, Finlay, JA, Park, D, Paik, MY, Krishnan, S, Sundaram, HS, Dimitriou, M, Sohn, KE, Callow, ME, Callow, JA, Handlin, DL, “ABC Triblock Surface-active Block Copolymer with Grafted Ethoxylated Fluoroalkyl Amphiphilic Side Chains for Marine Antifouling/fouling-Release Applications.” Langmuir, 25 (20) 12266–12274 (2009)

    Article  CAS  PubMed  Google Scholar 

  114. Park, D, Weinman, CJ, Finlay, JA, Fletcher, BR, Paik, MY, Sundaram, HS, Dimitriou, MD, Sohn, KE, Callow, ME, Callow, JA, Handlin, DL, “Amphiphilic Surface-Active Triblock Copolymers with Mixed Hydrophobic and Hydrophilic Side Chains for Tuned Marine Fouling-release Properties.” Langmuir, 26 (12) 9772–9781 (2010)

    Article  CAS  PubMed  Google Scholar 

  115. Gao, F, Zhang, G, Zhang, Q, Zhan, X, Chen, F, “Improved Antifouling Properties of Poly(ether sulfone) Membrane by Incorporating the Amphiphilic Comb Copolymer with Mixed Poly(ethylene glycol) and Poly(dimethylsiloxane) Brushes.” Ind. Eng. Chem. Res., 54 (35) 8789–8800 (2015)

    Article  CAS  Google Scholar 

  116. Krishnan, S, Wang, N, Ober, CK, Finlay, JA, Callow, ME, Callow, JA, Hexemer, A, Sohn, KE, Kramer, EJ, Fischer, DA, “Comparison of the Fouling Release Properties of Hydrophobic Fluorinated and Hydrophilic PEGylated Block Copolymer Surfaces: Attachment Strength of the Diatom Navicula and the Green Alga Ulva.” Biomacromolecules, 7 (5) 1449–1462 (2006)

    Article  CAS  PubMed  Google Scholar 

  117. Ngo, BKD, Grunlan, MA, “Protein Resistant Polymeric Biomaterials.” ACS Macro Lett., 6 992–1000 (2017)

    Article  CAS  PubMed  Google Scholar 

  118. Olsen, SM, Hansen, DH, Blom, A, Hempel AS, “Novel polysiloxane-based fouling control coating systems. US Patent Application, 14/775,375 (2016)

  119. Noguer, AC, Olsen, SM, Hvilsted, S, Kiil, S, “Field Study of the Long-Term Release of Block Copolymers from Fouling-Release Coatings.” Prog. Org. Coat., 112 101–108 (2017)

    Article  Google Scholar 

  120. Martinelli, E, Sarvothaman, MK, Galli, G, Pettitt, ME, Callow, ME, Callow, JA, Conlan, SL, Clare, AS, Sugiharto, AB, Davies, C, Williams, D, “Poly(dimethyl siloxane) (PDMS) Network Blends of Amphiphilic Acrylic Copolymers with Poly(ethylene glycol)-fluoroalkyl Side Chains for Fouling-Release Coatings II. Laboratory Assays and Field Immersion Trials.” Biofouling, 28 (6) 571–582 (2012)

    Article  CAS  PubMed  Google Scholar 

  121. Martinelli, E, Gunes, D, Wenning, BM, Ober, CK, Finlay, JA, Callow, ME, Callow, JA, Di Fino, A, Clare, AS, Galli, G, “Effects of Surface-active Block Copolymers with Oxyethylene and Fluoroalkyl Side Chains on the Antifouling Performance of Silicone-Based Films.” Biofouling, 32 (1) 81–93 (2016)

    Article  CAS  PubMed  Google Scholar 

  122. Martinelli, E, Guazzelli, E, Bartoli, C, Gazzarri, M, Chiellini, F, Galli, G, Callow, ME, Callow, JA, Finlay, JA, Hill, S, “Amphiphilic Pentablock Copolymers and their Blends with PDMS for Antibiofouling Coatings.” J. Polym. Sci. Part A Polym. Chem., 53 (10) 1213–1225 (2015)

    Article  ADS  CAS  Google Scholar 

  123. Martinelli, E, Suffredini, M, Galli, G, Glisenti, A, Pettitt, ME, Callow, ME, Callow, JA, Williams, D, Lyall, G, “Amphiphilic Block Copolymer/Poly(dimethylsiloxane)(PDMS) Blends and Nanocomposites for Improved Fouling-release.” Biofouling, 27 (5) 529–541 (2011)

    Article  CAS  PubMed  Google Scholar 

  124. Oliva, M, Martinelli, E, Galli, G, Pretti, C, “PDMS-based Films Containing Surface-active Amphiphilic Block Copolymers to Combat Fouling from Barnacles B. amphitrite and B. improvisus.Polymer, 108 476–482 (2017)

    Article  CAS  Google Scholar 

  125. Martinelli, E, Hill, SD, Finlay, JA, Callow, ME, Callow, JA, Glisenti, A, Galli, G, “Amphiphilic Modified-styrene Copolymer Films: Antifouling/fouling Release Properties Against the Green Alga Ulva linza.” Prog. Org. Coat., 90 235–242 (2016)

    Article  CAS  Google Scholar 

  126. Li, Y, Gao, YH, Li, XS, Yang, JY, Que, GH, “Influence of Surface Free Energy on the Adhesion of Marine Benthic Diatom Nitzschia closterium MMDL533.” Colloids Surf. B Biointerfaces, 75 (2) 550–556 (2010)

    Article  CAS  PubMed  Google Scholar 

  127. Frank, M, Kio, M, Drikakis, D, Könözsy, L, Asproulis, N, “Mass and Stiffness Effects on Thermal Resistance at the Solid–liquid Interface of Nanofluidic Channels.” J. Comput. Theor. Nanosci., 15 (1) 141–146 (2018)

    Article  CAS  Google Scholar 

  128. Rath, SK, Chavan, JG, Sasane, S, Srivastava, A, Patri, M, Samui, AB, Chakraborty, BC, Sawant, SN, “Coatings of PDMS-modified Epoxy via Urethane Linkage: Segmental Correlation Length, Phase Morphology, Thermomechanical and Surface Behavior.” Prog. Org. Coat., 65 (3) 366–374 (2009)

    Article  CAS  Google Scholar 

  129. Gapeeva, A, Iris, H, Rainer, A, Martina, B, “Characterization of a Polydimethylsiloxane-polythiourethane Polymer Blend with Potential as Fouling-release Coating.” In: 2017 IEEE 7th International Conference Nanomaterials, Application & Properties (NAP), pp. 01FNC08-1. IEEE, (2017)

  130. Baier, RE, “Surface Behaviour of Biomaterials: The Theta Surface for Biocompatibility.” J. Mater. Sci. Mater. Med., 17 (11) 1057–1062 (2006)

    Article  CAS  PubMed  Google Scholar 

  131. Pourhashem, S, Seif, A, Saba, F, Nezhad, EG, Ji, X, Zhou, Z, Zhai, X, Mirzaee, M, Duan, J, Rashidi, A, Hou, B, “Antifouling Nanocomposite Polymer Coatings for Marine Applications: A Review on Experiments, Mechanisms, and Theoretical Studies.” J. Mater. Sci. Technol., 118 73–113 (2022)

    Article  CAS  Google Scholar 

  132. Leonardi, AK, Ober, CK, “Polymer-based Marine Antifouling and Fouling Release Surfaces: Strategies for Synthesis and Modification.” Annual Rev. Chem. Biomol. Eng., 10 241–264 (2019)

    Article  Google Scholar 

  133. Schumacher, JF, Aldred, N, Callow, ME, Finlay, JA, Callow, JA, Clare, AS, Brennan, AB, “Species-specific Engineered Antifouling Topographies: Correlations Between the Settlement of Algal Zoospores and Barnacle Cyprids.” Biofouling, 23 (5) 307–317 (2007)

    Article  PubMed  Google Scholar 

  134. Xiao, L, Finlay, JA, Röhrig, M, Mieszkin, S, Worgull, M, Hölscher, H, Callow, JA, Callow, ME, Grunze, M, Rosenhahn, A, “Topographic Cues Guide the Attachment of Diatom Cells and Algal Zoospores.” Biofouling, 34 (1) 86–97 (2018)

    Article  PubMed  Google Scholar 

  135. Yu, Y, Venable, RM, Thirman, J, Chatterjee, P, Kumar, A, Pastor, RW, Roux, B, MacKerell, AD, Jr, Klauda, JB, “Drude Polarizable Lipid Force Field with Explicit Treatment of Long-Range Dispersion: Parametrization and Validation for Saturated and Monounsaturated Zwitterionic Lipids.” J. Chem. Theory Comput., 19 (9) 2590–2605 (2023)

    Article  CAS  PubMed  Google Scholar 

  136. Molino, PJ, Wetherbee, R, “The Biology of Biofouling Diatoms and Their Role in the Development of Microbial Slimes.” Biofouling, 24 (5) 365–379 (2008)

    Article  CAS  PubMed  Google Scholar 

  137. Scardino, AJ, Harvey, E, De Nys, R, “Testing Attachment Point Theory: Diatom Attachment on Microtextured Polyimide Biomimics.” Biofouling, 22 (1) 55–60 (2006)

    Article  CAS  PubMed  Google Scholar 

  138. Bonn, D, Eggers, J, Indekeu, J, Meunier, J, Rolley, E, “Wetting and Spreading.” Rev. Modern Phys., 81 (2) 739 (2009)

    Article  ADS  CAS  Google Scholar 

  139. Young, T, “An Essay on the Cohesion of Fluids.” Philos. Trans. R. Soc. Lond., 95 65–87 (1805)

    ADS  Google Scholar 

  140. Yuan, Y, Lee, TR, “Contact Angle and Wetting Properties.” In: Surface Science Techniques, pp. 3–34. Springer, Berlin, Heidelberg (2013)

    Chapter  Google Scholar 

  141. Wenzel, RN, “Surface Roughness and Contact Angle.” J. Phys. Chem., 53 (9) 1466–1467 (1949)

    Article  CAS  Google Scholar 

  142. Cassie, ABD, Baxter, S, “Wettability of Porous Surfaces.” Trans. Faraday Soc., 40 546–551 (1944)

    Article  CAS  Google Scholar 

  143. Ista, LK, Callow, ME, Finlay, JA, Coleman, SE, Nolasco, AC, Simons, RH, Callow, JA, Lopez, GP, “Effect of Substratum Surface Chemistry and Surface Energy on Attachment of Marine Bacteria and Algal Spores.” Appl. Environ. Microbiol., 70 (7) 4151–4157 (2004)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  144. Callow, ME, Callow, JA, Ista, LK, Coleman, SE, Nolasco, AC, Lopez, GP, “Use of Self-assembled Monolayers of Different Wettabilities to Study Surface Selection and Primary Adhesion Processes of Green Algal (Enteromorpha) Zoospores.” Appl. Environ. Microbiol., 66 (8) 3249–3254 (2000)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  145. Peppas, NA, Buri, PA, “Surface, Interfacial and Molecular Aspects of Polymer Bioadhesion on Soft Tissues.” J. Controll. Release, 2 257–275 (1985)

    Article  CAS  Google Scholar 

  146. Dou, Q, Wang, C, Cheng, C, Han, W, Thüne, PC, Ming, W, “PDMS-modified Polyurethane Films with Low Water Contact Angle Hysteresis.” Macromol. Chem. Phys., 207 (23) 2170–2179 (2006)

    Article  CAS  Google Scholar 

  147. Bormashenko, EY, “Wetting of Real Surfaces.” In: Wetting of Real Surfaces. de Gruyter (2018)

  148. Makkonen, L, “A Thermodynamic Model of Contact Angle Hysteresis.” J. Chem. Phys., 147 (6) 064703 (2017)

    Article  ADS  PubMed  Google Scholar 

  149. Peres, RS, Zmozinski, AV, Brust, FR, Macedo, AJ, Armelin, E, Aleman, C, Ferreira, CA, “Multifunctional Coatings Based on Silicone Matrix and Propolis Extract.” Prog. Org. Coat., 123 223–231 (2018)

    Article  CAS  Google Scholar 

  150. Nguyen-Tri, P, Tran, HN, Plamondon, CO, Tuduri, L, Vo, DVN, Nanda, S, Mishra, A, Chao, HP, Bajpai, AK, “Recent Progress in the Preparation, Properties and Applications of Superhydrophobic Nano-based Coatings and Surfaces: A Review.” Prog. Org. Coat., 132 235–256 (2019)

    Article  CAS  Google Scholar 

  151. Lewis, JA, “Non-silicone Biocide-free Antifouling Solutions.” In: Advances in Marine Antifouling Coatings and Technologies, pp. 709–724. Woodhead Publishing, Sawstonpp (2009)

    Chapter  Google Scholar 

  152. Kimmins, KM, James, BD, Nguyen, MT, Hatton, BD, Sone, ED, “Oil-infused Silicone Prevents Zebra Mussel Adhesion.” ACS Appl. Bio Mater., 2 (12) 5841–5847 (2019)

    Article  CAS  PubMed  Google Scholar 

  153. Selim, MS, Yang, H, Wang, FQ, Fatthallah, NA, Huang, Y, Kuga, S, “Silicone/ZnO Nanorod Composite Coating as a Marine Antifouling Surface.” Appl. Surf. Sci., 466 40–50 (2019)

    Article  ADS  CAS  Google Scholar 

  154. Chambers, LD, Stokes, KR, Walsh, FC, Wood, RJ, “Modern Approaches to Marine Antifouling Coatings.” Surf. Coat. Technol., 201 (6) 3642–3652 (2006)

    Article  CAS  Google Scholar 

  155. Callow, JA, Callow, ME, “Trends in the Development of Environmentally Friendly Fouling-resistant Marine Coatings.” Nat. Commun., 2 (1) 244 (2011)

    Article  ADS  PubMed  Google Scholar 

  156. Zhu, P, Meng, W, Huang, Y, “Synthesis and Antibiofouling Properties of Crosslinkable Copolymers Grafted with Fluorinated Aromatic Side Chains.” RSC Adv., 7 (6) 3179–3189 (2017)

    Article  ADS  CAS  Google Scholar 

  157. Tan, J, Liu, W, Wang, H, Sun, Y, Wang, S, “Preparation and Properties of UV-curable Waterborne Comb-like (Meth)acrylate Copolymers with Long Fluorinated Side Chains.” Prog. Org. Coat., 94 62–72 (2016)

  158. Yarbrough, JC, Rolland, JP, DeSimone, JM, Callow, ME, Finlay, JA, Callow, JA, “Contact Angle Analysis, Surface Dynamics, and Biofouling Characteristics of Cross-linkable, Random Perfluoropolyether-based Graft Terpolymers.” Macromolecules, 39 (7) 2521–2528 (2006)

    Article  ADS  CAS  Google Scholar 

  159. Spruell, JM, Wolffs, M, Leibfarth, FA, Stahl, BC, Heo, J, Connal, LA, Hu, J, Hawker, CJ, “Reactive, Multifunctional Polymer Films through Thermal Cross-linking of Orthogonal Click Groups.” J. Am. Chem. Soc., 133 (41) 16698–16706 (2011)

    Article  CAS  PubMed  Google Scholar 

  160. Lu, Z, Chen, Z, Guo, Y, Ju, Y, Liu, Y, Feng, R, Xiong, C, Ober, CK, Dong, L, “Flexible Hydrophobic Antifouling Coating with Oriented Nanotopography and Nonleaking Capsaicin.” ACS Appl. Mater. Interfaces, 10 (11) 9718–9726 (2018)

    Article  CAS  PubMed  Google Scholar 

  161. Qiu, H, Feng, K, Gapeeva, A, Meurisch, K, Kaps, S, Li, X, Yu, L, Mishra, YK, Adelung, R, Baum, M, “Functional Polymer Materials for Modern Marine Biofouling Control.” Prog. Polym. Sci., 127 101516 (2022)

    Article  CAS  Google Scholar 

  162. Brady, RF, Jr, Singer, IL, “Mechanical Factors Favoring Release from Fouling Release Coatings.” Biofouling, 15 (1–3) 73–81 (2000)

    Article  CAS  PubMed  Google Scholar 

  163. Brady, RF, Jr, “A Fracture Mechanical Analysis of Fouling Release from Nontoxic Antifouling Coatings.” Prog. Org. Coat., 43 (1–3) 188–192 (2001)

    Article  CAS  Google Scholar 

  164. Brady, RF, “Fouling-Release Coatings for Warships.” Def. Sci. J., 55 (1) 75 (2005)

    Article  MathSciNet  CAS  Google Scholar 

  165. Liaw, WC, Chang-Chien, J, Kang, H, Cheng, YL, Fu, LW, “A Straightforward Synthesis and Characterization of a New Poly(Imide Siloxane)-Based Thermoplastic Elastomer.” Polym. J., 40 (2) 116–125 (2008)

    Article  CAS  Google Scholar 

  166. Qiu, H, Hölken, I, Gapeeva, A, Filiz, V, Adelung, R, Baum, M, “Development and Characterization of Mechanically Durable Silicone-Polythiourethane Composites Modified with Tetrapodal Shaped ZnO Particles for the Potential Application as Fouling-Release Coating in the Marine Sector.” Materials, 11 (12) 2413 (2018)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  167. Qiu, H, Gapeeva, A, Hölken, I, Kaps, S, Adelung, R, Baum, MJ, “Polydimethylsiloxane Microdomains Formation at the Polythiourethane/Air Interface and Its Influence on Barnacle Release.” ACS Appl. Mater. Interfaces, 13 (3) 4545–4552 (2021)

    Article  CAS  PubMed  Google Scholar 

  168. Groten, J, Rühe, J, “Surfaces with Combined Microscale and Nanoscale Structures: A Route to Mechanically Stable Superhydrophobic Surfaces?” Langmuir, 29 (11) 3765–3772 (2013)

    Article  CAS  PubMed  Google Scholar 

  169. Xie, S, Wang, J, Wang, L, Sun, W, Lu, Z, Liu, G, Hou, B, “Fluorinated Diols Modified Polythiourethane Copolymer for Marine Antifouling Coatings.” Prog. Org. Coat., 146 105733 (2020)

    Article  CAS  Google Scholar 

  170. Gao, J, Yan, D, Ni, H, Wang, L, Yang, Y, Wang, X, “Protein-Resistance Performance Enhanced by Formation of Highly-Ordered Perfluorinated Alkyls on Fluorinated Polymer Surfaces.” J. Colloid Interface Sci., 393 361–368 (2013)

    Article  ADS  CAS  PubMed  Google Scholar 

  171. Van Dam, A, Smulders, MM, Zuilhof, H, “Self-healing Antifouling Polymer Brushes: Effects of Degree of Fluorination.” Appl. Surf. Sci., 579 152264 (2022)

    Article  Google Scholar 

  172. Liu, H, Wang, CY, Li, C, Qin, YG, Wang, ZH, Yang, F, Li, ZH, Wang, JC, “A Functional Chitosan-Based Hydrogel as a Wound Dressing and Drug Delivery System in the Treatment of Wound Healing.” RSC Adv., 8 7533–7549 (2018)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  173. Drury, JL, Mooney, DJ, “Hydrogels for Tissue Engineering: Scaffold Design Variables and Applications.” Biomaterials, 24 4337–4351 (2003)

    Article  CAS  PubMed  Google Scholar 

  174. Khan, F, Atif, M, Haseen, M, Kamal, S, Khan, MS, Shahid, S, Nami, SAA, “Synthesis, Classification and Properties of Hydrogels: Their Applications in Drug Delivery and Agriculture.” J. Mater. Chem B, 10 170–203 (2022)

    Article  CAS  PubMed  Google Scholar 

  175. Peppas, NA, Hilt, JZ, Khademhosseini, A, Langer, R, “Hydrogels in Biology and Medicine: From Molecular Principles to Bionanotechnology.” Adv. Mater., 18 1345–1360 (2006)

    Article  CAS  Google Scholar 

  176. Musgrave, CSA, Fang, F, “Contact Lens Materials: A Materials Science Perspective.” Materials, 12 (2) 261 (2019)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  177. Schild, HG, “Poly(N-Isopropylacrylamide) - Experiment, Theory and Application.” Prog. Polym. Sci., 17 163–249 (1992)

    Article  CAS  Google Scholar 

  178. Zhang, WX, Wang, P, Liu, SF, Chen, J, Chen, R, He, XY, Ma, GF, Lei, ZQ, “Factors Affecting the Properties of Superabsorbent Polymer Hydrogels and Methods to Improve Their Performance: A Review.” J. Mater. Sci., 56 16223–16242 (2021)

    Article  ADS  CAS  Google Scholar 

  179. Zohuriaan-Mehr, MJ, Kabiri, K, “Superabsorbent Polymer Materials: A Review.” Iran. Polym. J., 17 451–477 (2008)

    CAS  Google Scholar 

  180. Zohuriaan-Mehr, MJ, Omidian, H, Doroudiani, S, Kabiri, K, “Advances in Non-Hygienic Applications of Superabsorbent Hydrogel Materials.” J. Mater. Sci., 45 5711–5735 (2010)

    Article  ADS  CAS  Google Scholar 

  181. Shang, J, Theato, P, “Smart Composite Hydrogel with pH-, Ionic Strength-and Temperature-Induced Actuation.” Soft Matter, 14 (41) 8401–8407 (2018)

    Article  ADS  CAS  PubMed  Google Scholar 

  182. Omidian, H, Park, K, Rocca, JG, “Recent Developments in Superporous Hydrogels.” J. Pharm. Pharmacol., 59 317–327 (2007)

    Article  CAS  PubMed  Google Scholar 

  183. Omidian, H, Rocca, JG, Park, K, “Advances in Superporous Hydrogels.” J. Control. Release, 102 3–12 (2005)

    Article  CAS  PubMed  Google Scholar 

  184. Chen, J, Park, H, Park, K, “Synthesis of Superporous Hydrogels: Hydrogels with Fast Swelling and Superabsorbent Properties.” J. Biomed. Mater. Res., 44 53–62 (1999)

    Article  CAS  PubMed  Google Scholar 

  185. Ben Djemaa, I, Auguste, S, Drenckhan-Andreatta, W, Andrieux, S, “Hydrogel Foams from Liquid Foam Templates: Properties and Optimisation.” Adv. Colloid Interface Sci., 294 102478 (2021)

    Article  PubMed  Google Scholar 

  186. Dinu, MV, Ozmen, MM, Dragan, ES, Okay, O, “Freezing as a Path to Build Macroporous Structures: Superfast Responsive Polyacrylamide Hydrogels.” Polymer, 48 195–204 (2007)

    Article  CAS  Google Scholar 

  187. De France, KJ, Xu, F, Hoare, T, “Structured Macroporous Hydrogels: Progress, Challenges, and Opportunities.” Adv. Healthcare Mater., 7 1700927 (2018)

    Article  Google Scholar 

  188. Misdan, N, Ismail, AF, Hilal, N, “Recent Advances in the Development of (Bio)fouling Resistant Thin Film Composite Membranes for Desalination.” Desalination, 380 105–111 (2016)

    Article  CAS  Google Scholar 

  189. Higuchi, A, Sugiyama, K, Yoon, BO, Sakurai, M, Hara, M, Sumita, M, Sugawara, SI, Shirai, T, “Serum Protein Adsorption and Platelet Adhesion on Pluronic™-adsorbed Polysulfone Membranes.” Biomaterials, 24 (19) 3235–3245 (2003)

    Article  CAS  PubMed  Google Scholar 

  190. Murosaki, T, Ahmed, N, Gong, JP, “Antifouling Properties of Hydrogels.” Sci. Technol. Adv. Mater., 12 (6) 064706 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  191. Zhang, F, Kang, ET, Neoh, KG, Huang, W, “Modification of Gold Surface by Grafting of Poly(ethylene glycol) for Reduction in Protein Adsorption and Platelet Adhesion.” J. Biomater. Sci., Polym. Ed., 12 (5) 515–531 (2001)

    Article  CAS  PubMed  Google Scholar 

  192. Liu, SQ, Yang, C, Huang, Y, Ding, X, Li, Y, Fan, WM, Hedrick, JL, Yang, YY, “Antimicrobial and Antifouling Hydrogels Formed In Situ from Polycarbonate and Poly(ethylene glycol) via Michael Addition.” Adv. Mater., 24 (48) 6484–6489 (2012)

    Article  CAS  PubMed  Google Scholar 

  193. Wang, J, Wei, J, “Hydrogel Brushes Grafted from Stainless Steel via Surface-Initiated Atom Transfer Radical Polymerization for Marine Antifouling.” Appl. Surface Sci., 382 202–216 (2016)

    Article  ADS  CAS  Google Scholar 

  194. Lundberg, P, Bruin, A, Klijnstra, JW, Nyström, AM, Johansson, M, Malkoch, M, Hult, A, “Poly(ethylene glycol)-Based Thiol-Ene Hydrogel Coatings−Curing Chemistry, Aqueous Stability, and Potential Marine Antifouling Applications.” ACS Appl. Mater. Interfaces, 2 (3) 903–912 (2010)

    Article  CAS  PubMed  Google Scholar 

  195. Higaki, Y, Kobayashi, M, Murakami, D, Takahara, A, “Anti-fouling Behavior of Polymer Brush Immobilized Surfaces.” Polym. J., 48 (4) 325–331 (2016)

    Article  CAS  Google Scholar 

  196. Wang, Q, Mynar, JL, Yoshida, M, Lee, E, Lee, M, Okuro, K, Kinbara, K, Aida, T, “High-Water-Content Mouldable Hydrogels by Mixing Clay and a Dendritic Molecular Binder.” Nature, 463 (7279) 339–343 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  197. Chang, CW, Van Spreeuwel, A, Zhang, C, Varghese, S, “PEG/Clay Nanocomposite Hydrogel: A Mechanically Robust Tissue Engineering Scaffold.” Soft Matter, 6 (20) 5157–5164 (2010)

    Article  ADS  CAS  Google Scholar 

  198. Fu, M, Liang, Y, Lv, X, Li, C, Yang, YY, Yuan, P, Ding, X, “Recent Advances in Hydrogel-Based Anti-Infective Coatings.” J. Mater. Sci. Technol., 85 169–183 (2021)

    Article  CAS  Google Scholar 

  199. Andrade, JD, King, RN, Gregonis, DE, Coleman, DL, “Surface Characterization of Poly(hydroxyethyl methacrylate) and Related Polymers. I. Contact Angle Methods in Water.” In: Journal of Polymer Science. Polymer symposia, (Vol. 66, No. 1, pp. 313–336), New York Wiley Subscription Services, Inc., A Wiley Company (1979)

  200. Jeon, SI, Lee, JH, Andrade, JD, De Gennes, P, “Protein—surface Interactions in the Presence of Polyethylene Oxide: I. Simplified Theory.” J. Colloid Interface Sci., 142 (1) 149–158 (1991)

    Article  ADS  CAS  Google Scholar 

  201. Taylor, W, Jones, RA, “Protein Adsorption on Well-characterized Polyethylene Oxide Brushes on Gold: Dependence on Molecular Weight and Grafting Density.” Langmuir, 29 (20) 6116–6122 (2013)

    Article  CAS  PubMed  Google Scholar 

  202. Efremova, NV, Sheth, SR, Leckband, DE, “Protein-induced Changes in Poly(ethylene glycol) Brushes: Molecular Weight and Temperature Dependence.” Langmuir, 17 (24) 7628–7636 (2001)

    Article  CAS  Google Scholar 

  203. Stammen, JA, Williams, S, Ku, DN, Guldberg, RE, “Mechanical Properties of a Novel PVA Hydrogel in Shear and Unconfined Compression.” Biomaterials, 22 (8) 799–806 (2001)

    Article  CAS  PubMed  Google Scholar 

  204. Wang, K, Zhang, X, Li, C, Sun, X, Meng, Q, Ma, Y, Wei, Z, “Chemically Crosslinked Hydrogel Film Leads to Integrated Flexible Supercapacitors with Superior Performance.” Adv. Mater., 27 (45) 7451–7457 (2015)

    Article  CAS  PubMed  Google Scholar 

  205. Katsuyama, Y, Kurokawa, T, Kaneko, T, Gong, JP, Osada, Y, Yotsukura, N, Motomura, T, “Inhibitory Effects of Hydrogels on the Adhesion, Germination, and Development of Zoospores Originating from Laminaria angustata.” Macromol. Biosci., 2 (4) 163–169 (2002)

    Article  CAS  Google Scholar 

  206. Rasmussen, K, Willemsen, PR, Østgaard, K, “Barnacle Settlement on Hydrogels.” Biofouling, 18 (3) 177–191 (2002)

    Article  CAS  Google Scholar 

  207. Cao, X, Pettit, ME, Conlan, SL, Wagner, W, Ho, AD, Clare, AS, Callow, JA, Callow, ME, Grunze, M, Rosenhahn, A, “Resistance of Polysaccharide Coatings to Proteins, Hematopoietic Cells, and Marine Organisms.” Biomacromolecules, 10 (4) 907–915 (2009)

    Article  CAS  PubMed  Google Scholar 

  208. Bowen, J, Pettitt, ME, Kendall, K, Leggett, GJ, Preece, JA, Callow, ME, Callow, JA, “The Influence of Surface Lubricity on the Adhesion of Navicula perminuta and Ulva linza to Alkanethiol Self-assembled Monolayers.” J. R. Soc. Interface., 4 (14) 473–477 (2007)

    Article  CAS  PubMed  Google Scholar 

  209. Yuk, H, Zhang, T, Parada, GA, Liu, X, Zhao, X, “Skin-Inspired Hydrogel–Elastomer Hybrids with Robust Interfaces and Functional Microstructures.” Nat. Commun., 7 (1) 12028 (2016)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  210. Cheng, L, Liu, C, Wang, J, Wang, Y, Zha, W, Li, X, “Tough Hydrogel Coating on Silicone Rubber with Improved Antifouling and Antibacterial Properties.” ACS Appl. Polym. Mater., 4 (5) 3462–3472 (2022)

    Article  CAS  Google Scholar 

  211. Murosaki, T, Noguchi, T, Kakugo, A, Putra, A, Kurokawa, T, Furukawa, H, Osada, Y, Gong, JP, Nogata, Y, Matsumura, K, Yoshimura, E, “Antifouling Activity of Synthetic Polymer Gels against Cyprids of the Barnacle (Balanus amphitrite) In Vitro.” Biofouling., 25 (4) 313–320 (2009)

    Article  CAS  PubMed  Google Scholar 

  212. Peppas, NA, Hilt, JZ, Khademhosseini, A, Langer, R, “Hydrogels in Biology and Medicine: From Molecular Principles to Bionanotechnology.” Adv. Mater., 18 (11) 1345–1360 (2009)

    Article  Google Scholar 

  213. Buenger, D, Topuz, F, Groll, J, “Hydrogels in Sensing Applications.” Prog. Polym. Sci., 37 (12) 1678–1719 (2012)

    Article  CAS  Google Scholar 

  214. Senanayak, SP, Sangwan, VK, McMorrow, JJ, Everaerts, K, Chen, Z, Facchetti, A, Hersam, MC, Marks, TJ, Narayan, KS, “Self-Assembled Nanodielectrics for High-Speed, Low-Voltage Solution-Processed Polymer Logic Circuits.” Adv. Electron. Mater., 1 (12) 1500226 (2015)

    Article  Google Scholar 

  215. Dasgupta, S, Stoesser, G, Schweikert, N, Hahn, R, Dehm, S, Kruk, R, Hahn, H, “Printed and Electrochemically Gated, High-Mobility, Inorganic Oxide Nanoparticle FETs and Their Suitability for High-Frequency Applications.” Adv. Funct. Mater., 22 (23) 4909–4919 (2012)

    Article  CAS  Google Scholar 

  216. Hench, LL, West, JK, “The Sol-Gel Process.” Chemical Rev., 90 (1) 33–72 (1990)

    Article  CAS  Google Scholar 

  217. Zhao, Y, Liu, B, Pan, L, Yu, G, “3D Nanostructured Conductive Polymer Hydrogels for High-performance Electrochemical Devices.” Energy Environ. Sci., 6 (10) 2856–2870 (2013)

    Article  CAS  Google Scholar 

  218. Nezakati, T, Seifalian, A, Tan, A, Seifalian, AM, “Conductive Polymers: Opportunities and Challenges in Biomedical Applications.” Chem. Rev., 118 (14) 6766–6843 (2018)

    Article  CAS  PubMed  Google Scholar 

  219. Zhao, F, Shi, Y, Pan, L, Yu, G, “Multifunctional Nanostructured Conductive Polymer Gels: Synthesis, Properties, and Applications.” Acc. Chem. Res., 50 (7) 1734–1743 (2017)

    Article  CAS  PubMed  Google Scholar 

  220. Fang, Z, Zhang, A, Wu, P, Yu, G, “Inorganic Cyanogels and their Derivatives for Electrochemical Energy Storage and Conversion.” ACS Mater. Letters, 1 (1) 158–170 (2019)

    Article  CAS  Google Scholar 

  221. Nandakumar, DK, Ravi, SK, Zhang, Y, Guo, N, Zhang, C, Tan, SC, “A Super Hygroscopic Hydrogel for Harnessing Ambient Humidity for Energy Conservation and Harvesting.” Energy Environ. Sci., 11 (8) 2179–2187 (2018)

    Article  Google Scholar 

  222. Gacesa, P, “Alginates.” Carbohydrate Polym., 8 (3) 161–182 (1988)

    Article  CAS  Google Scholar 

  223. Ostrowska-Czubenko, J, Gierszewska-Drużyńska, M, “Effect of Ionic Crosslinking on the Water State in Hydrogel Chitosan Membranes.” Carbohydr. Polym., 77 (3) 590–598 (2009)

    Article  CAS  Google Scholar 

  224. Wang, Y, Shi, Y, Lijia Pan, Y, Zhao, DY, Li, Y, Shi, Y, Guihua, Y, “Dopant-enabled Supramolecular Approach for Controlled Synthesis of Nanostructured Conductive Polymer Hydrogels.” Nano Lett., 15 (11) 7736–7741 (2015)

    Article  ADS  CAS  PubMed  Google Scholar 

  225. Li, P, Jin, Z, Qian, Y, Fang, Z, Xiao, D, Yu, G, “Supramolecular Confinement of Single Cu Atoms in Hydrogel Frameworks for Oxygen Reduction Electrocatalysis with High Atom Utilization.” Mater. Today., 35 78–86 (2020)

    Article  ADS  CAS  Google Scholar 

  226. Seuring, J, Agarwal, S, “Polymers with Upper Critical Solution Temperature in Aqueous Solution.” Macromol. Rapid Commun., 33 (22) 1898–1920 (2012)

    Article  CAS  PubMed  Google Scholar 

  227. Shi, Y, Ha, H, Al-Sudani, A, Ellison, CJ, Yu, G, “Thermoplastic Elastomer-Enabled Smart Electrolyte for Thermoresponsive Self-protection of Electrochemical Energy Storage Devices.” Adv. Mater., 28 (36) 7921–7928 (2016)

    Article  CAS  PubMed  Google Scholar 

  228. Fu, W, Zhao, B, “Thermoreversible Physically Crosslinked Hydrogels from UCST-type Thermosensitive ABA Linear Triblock Copolymers.” Polym. Chem., 7 (45) 6980–6991 (2016)

    Article  CAS  Google Scholar 

  229. Hu, X, Kaplan, D, Cebe, P, “Determining Beta-Sheet Crystallinity in Fibrous Proteins by Thermal Analysis and Infrared Spectroscopy.” Macromolecules, 39 (18) 6161–6170 (2006)

    Article  ADS  CAS  Google Scholar 

  230. Ifkovits, JL, Burdick, JA, “Photopolymerizable and Degradable Biomaterials for Tissue Engineering Applications.” Tissue Eng., 13 (10) 2369–2385 (2007)

    Article  CAS  PubMed  Google Scholar 

  231. Ma, C, Shi, Y, Pena, DA, Peng, L, Yu, G, “Thermally Responsive Hydrogel Blends: A General Drug Carrier Model for Controlled Drug Release.” Angew. Chem., 127 (25) 7484–7488 (2015)

    Article  ADS  Google Scholar 

  232. Gan, D, Xing, W, Jiang, L, Fang, J, Zhao, C, Ren, F, Fang, L, Wang, K, Lu, X, “Plant-Inspired Adhesive and Tough Hydrogel Based on Ag-Lignin Nanoparticles-Triggered Dynamic Redox Catechol Chemistry.” Nat. Commun., 10 1487 (2019)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  233. Zhao, F, Zhou, X, Shi, Y, Qian, X, Alexander, M, Zhao, X, Mendez, S, Yang, R, Qu, L, Yu, G, “Highly Efficient Solar Vapour Generation via Hierarchically Nanostructured Gels.” Nat. Nanotechnol., 13 (6) 489–495 (2018)

    Article  ADS  CAS  PubMed  Google Scholar 

  234. Peppas, NA, Berner, RE, Jr, “Proposed Method of Intracopdal Injection and Gelation of Poly(vinyl alcohol) Solution in Vocal Cords: Polymer Considerations.” Biomaterials, 1 (3) 158–162 (1980)

    Article  CAS  PubMed  Google Scholar 

  235. Dai, WS, Barbari, TA, “Hydrogel Membranes with Mesh Size Asymmetry Based on the Gradient Crosslinking of Poly(vinyl alcohol).” J. Membr. Sci., 156 (1) 67–79 (1999)

    Article  CAS  Google Scholar 

  236. Gao, H, Zhou, W, Jang, JH, Goodenough, JB, “Cross-linked Chitosan as a Polymer Network Binder for an Antimony Anode in Sodium-Ion Batteries.” Adv. Energy Mater., 6 (6) 1502130 (2016)

    Article  Google Scholar 

  237. Yeom, CK, Lee, KH, “Characterization of Sodium Alginate Membrane Crosslinked with Glutaraldehyde in Pervaporation Separation.” J. Appl. Polym. Sci., 67 (2) 209–219 (1998)

    Article  CAS  Google Scholar 

  238. Koo, B, Kim, H, Cho, Y, Lee, KT, Choi, NS, Cho, J, “A Highly Cross-Linked Polymeric Binder for High-Performance Silicon Negative Electrodes in Lithium-Ion Batteries.” Angew. Chem., 124 (35) 8892–8897 (2012)

    Article  ADS  Google Scholar 

  239. Kolb, HC, Sharpless, KB, “The Growing Impact of Click Chemistry on Drug Discovery.” Drug Discov. Today, 8 (24) 1128–1137 (2003)

    Article  CAS  PubMed  Google Scholar 

  240. Duval, A, Lange, H, Lawoko, M, Crestini, C, “Reversible Crosslinking of Lignin via the Furan–maleimide Diels-Alder Reaction.” Green Chem., 17 (11) 4991–5000 (2015)

    Article  CAS  Google Scholar 

  241. Nimmo, CM, Owen, SC, Shoichet, MS, “Diels−Alder Click Cross-Linked Hyaluronic acid Hydrogels for Tissue Engineering.” Biomacromolecules, 12 (3) 824–830 (2011)

    Article  CAS  PubMed  Google Scholar 

  242. Yang, L, Lu, X, Wang, Z, Xia, H, “Diels–Alder Dynamic Crosslinked Polyurethane/polydopamine Composites with NIR Triggered Self-Healing Function.” Polym. Chem., 9 (16) 2166–2172 (2018)

    Article  CAS  Google Scholar 

  243. Kalia, J, Raines, RT, “Hydrolytic Stability of Hydrazones and Oximes.” Angew. Chem. Int. Ed., 47 (39) 7523–7526 (2008)

    Article  CAS  Google Scholar 

  244. Grover, GN, Lam, J, Nguyen, TH, Segura, T, Maynard, HD, “Biocompatible Hydrogels by Oxime Click Chemistry.” Biomacromolecules, 13 (10) 3013–3017 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Wen, Y, Li, F, Li, C, Yin, Y, Li, J, “High Mechanical Strength Chitosan-Based Hydrogels Cross-Linked with Poly(Ethylene Glycol)/ Polycaprolactone Micelles for the Controlled Release of Drugs/ Growth Factors.” J. Mater. Chem. B., 5 961–971 (2017)

    Article  CAS  PubMed  Google Scholar 

  246. Pierre, AC, Pajonk, GM, “Chemistry of Aerogels and their Applications.” Chem. Rev., 102 (11) 4243–4266 (2002)

    Article  CAS  PubMed  Google Scholar 

  247. Biener, J, Stadermann, M, Suss, M, Worsley, MA, Biener, MM, Rose, KA, Baumann, TF, “Advanced Carbon Aerogels for Energy Applications.” Energy Environ. Sci., 4 (3) 656–667 (2011)

    Article  CAS  Google Scholar 

  248. Bae, J, Li, Y, Zhang, J, Zhou, X, Zhao, F, Shi, Y, Goodenough, JB, Yu, G, “A 3D Nanostructured Hydrogel-Framework-Derived High-Performance Composite Polymer Lithium-Ion Electrolyte.” Angew. Chem. Int. Ed., 57 (8) 2096–2100 (2018)

    Article  CAS  Google Scholar 

  249. Zhang, J, Shi, Y, Ding, Y, Peng, L, Zhang, W, Yu, G, “A Conductive Molecular Framework Derived Li2S/N, P-Codoped Carbon Cathode for Advanced Lithium-Sulfur Batteries.” Adv. Energy Mater., 7 (14) 1602876 (2017)

    Article  Google Scholar 

  250. Wei, TY, Chen, CH, Chien, HC, Lu, SY, Hu, CC, “A Cost-effective Supercapacitor Material of Ultrahigh Specific Capacitances: Spinel Nickel Cobaltite Aerogels from an Epoxide-Driven Sol–Gel Process.” Adv. Mater., 22 (3) 347–351 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  251. Zhu, C, Liu, T, Qian, F, Han, TYJ, Duoss, EB, Kuntz, JD, Spadaccini, CM, Worsley, MA, Li, Y, “Supercapacitors Based on Three-dimensional Hierarchical Graphene Aerogels with Periodic Macropores.” Nano Lett., 16 (6) 3448–3456 (2016)

    Article  ADS  CAS  PubMed  Google Scholar 

  252. Yang, J, Wang, X, Li, B, Ma, L, Shi, L, Xiong, Y, Xu, H, “Novel Iron/Cobalt-containing Polypyrrole Hydrogel-Derived Trifunctional Electrocatalyst for Self-powered Overall Water Splitting.” Adv. Funct. Mater., 27 (17) 1606497 (2017)

    Article  Google Scholar 

  253. Mu, P, Zhang, Z, Bai, W, He, J, Sun, H, Zhu, Z, Liang, W, Li, A, “Superwetting Monolithic Hollow-Carbon-Nanotubes Aerogels with Hierarchically Nanoporous Structure for Efficient Solar Steam Generation.” Adv. Energy Mater., 9 (1) 1802158 (2019)

    Article  Google Scholar 

  254. Wei, Z, Yang, JH, Zhou, J, Xu, F, Zrínyi, M, Dussault, PH, Osada, Y, Chen, YM, “Self-Healing Gels Based on Constitutional Dynamic Chemistry and their Potential Applications.” Chem. Soc. Rev., 43 (23) 8114–8131 (2014)

    Article  CAS  PubMed  Google Scholar 

  255. Huang, S, Wan, F, Bi, S, Zhu, J, Niu, Z, Chen, JA, “SelfHealing Integrated All-in-One Zinc-Ion Battery.” Angew. Chem. Int. Ed., 58 4313–4317 (2019)

    Article  CAS  Google Scholar 

  256. Taylor, DL, Panhuis, M, “Self-healing Hydrogels.” Adv. Mater., 28 (41) 9060–9093 (2016)

    Article  CAS  PubMed  Google Scholar 

  257. Ahn, BK, Lee, DW, Israelachvili, JN, Waite, JH, “Surface-initiated Self-healing of Polymers in Aqueous Media.” Nat. Mater., 13 (9) 867–872 (2014)

    Article  ADS  CAS  PubMed  Google Scholar 

  258. Omidian, H, Rocca, JG, Park, K, “Elastic, Superporous Hydrogel Hybrids of Polyacrylamide and Sodium Alginate.” Macromolecular Biosci., 6 (9) 703–710 (2006)

    Article  CAS  Google Scholar 

  259. Alsaid, Y, Wu, S, Wu, D, Du, Y, Shi, L, Khodambashi, R, Rico, R, Hua, M, Yan, Y, Zhao, Y, Aukes, D, “Tunable Sponge-like Hierarchically Porous Hydrogels with Simultaneously Enhanced Diffusivity and Mechanical Properties.” Adv. Mater., 33 (20) 2008235 (2021)

    Article  CAS  Google Scholar 

  260. Gemeinhart, RA, Park, H, Park, K, “Pore Structure of Superporous Hydrogels.” Polym. Adv. Technol., 11 617–625 (2000)

    Article  CAS  Google Scholar 

  261. Dinu, MV, Ozmen, MM, Dragan, ES, Okay, O, “Freezing as a Path to Build Macroporous Structures: Superfast Responsive Polyacrylamide Hydrogels.” Polymer, 48 195–204 (2007)

    Article  CAS  Google Scholar 

  262. Dinu, MV, Pradny, M, Dragan, ES, Michalek, J, “Morphogical and Swelling Properties of Porous Hydrogels Based on Poly(Hydroxyethyl Methacrylate) and Chitosan Modulated by Ice-Templating Process and Porogen Leaching.” J. Polym. Res., 20 285 (2013)

    Article  Google Scholar 

  263. Omidian, H, Rocca, JG, Park, K, “Advances in Superporous Hydrogels.” J. Controll. Release, 102 (1) 3–12 (2005)

    Article  CAS  Google Scholar 

  264. Ma, Y, Hua, M, Wu, S, Du, Y, Pei, X, Zhu, X, Zhou, F, He, X, “Bioinspired High-Power-Density Strong Contractile Hydrogel by Programmable Elastic Recoil.” Sci. Adv., 6 (47) eabd2520 (2020)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  265. Choudhary, H, Raghavan, SR, “Superfast-expanding Porous Hydrogels: Pushing New Frontiers in Converting Chemical Potential into Useful Mechanical Work.” ACS Appl. Mater. Interfaces, 14 (11) 13733–13742 (2022)

    Article  CAS  PubMed  Google Scholar 

  266. Zhou, X, Zhao, F, Guo, Y, Rosenberger, B, Yu, G, “Architecting Highly Hydratable Polymer Networks to Tune the Water State for Solar Water Purification.” Sci. Adv., 5 (6) eaaw5484 (2019)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  267. Takahiro, M, Tasuku, N, Yuki, F, Wei, H, Takamasa, S, Takayuki, K, Ung-il, C, Ping, GJ, “Yielding Criteria of Double Network Hydrogels.” (2016)

  268. Guo, Y, Lu, H, Zhao, F, Zhou, X, Shi, W, Yu, G, “Biomass-derived Hybrid Hydrogel Evaporators for Cost-effective Solar Water Purification.” Adv. Mater., 32 (11) 1907061 (2020)

    Article  CAS  Google Scholar 

  269. Matsuda, T, Nakajima, T, Fukuda, Y, Hong, W, Sakai, T, Kurokawa, T, Chung, UI, Gong, JP, “Yielding Criteria of Double Network Hydrogels.” Macromolecules, 49 (5) 1865–1872 (2016)

    Article  ADS  CAS  Google Scholar 

  270. Matsuda, T, Kawakami, R, Namba, R, Nakajima, T, Gong, JP, “Mechanoresponsive Self-Growing Hydrogels Inspired by Muscle Training”. Science, 363 (6426), 504–508 (2019)

    Article  ADS  CAS  PubMed  Google Scholar 

  271. Ter Schiphorst, J, Coleman, S, Stumpel, JE, Ben Azouz, A, Diamond, D, Schenning, AP, “Molecular Design of Light-responsive Hydrogels, for In Situ Generation of Fast and Reversible Valves for Microfluidic Applications.” Chem. Mater., 27 (17) 5925–5931 (2015)

    Article  Google Scholar 

  272. Zhao, T, Wang, G, Hao, D, Chen, L, Liu, K, Liu, M, “Macroscopic Layered Organogel–hydrogel Hybrids with Controllable Wetting and Swelling Performance.” Adv. Funct. Mater., 28 (49) 1800793 (2018)

    Article  Google Scholar 

  273. Li, J, Hu, Y, Vlassak, JJ, Suo, Z, “Experimental Determination of Equations of State for Ideal Elastomeric Gels.” Soft Matter, 8 (31) 8121–8128 (2012)

    Article  ADS  CAS  Google Scholar 

  274. Rohindra, DR, Nand, AV, Khurma, JR, “Swelling Properties of Chitosan Hydrogels.” S. Pac. J. Nat. Appl. Sci., 22 (1) 32–35 (2004)

    Article  Google Scholar 

  275. Yu, H, Grainger, DW, “Thermo-sensitive Swelling Behavior in Crosslinked N-isopropylacrylamide Networks: Cationic, Anionic, and Ampholytic Hydrogels.” J. Appl. Polym. Sci., 49 (9) 1553–1563 (1993)

    Article  CAS  Google Scholar 

  276. Hirotsu, S, Hirokawa, Y, Tanaka, T, “Volume-phase Transitions of Ionized N-isopropylacrylamide Gels.” J. Chem. Phys., 87 (2) 1392–1395 (1987)

    Article  ADS  CAS  Google Scholar 

  277. Nord, FF, Bier, M, Timasheff, SN, “Investigations on Proteins and Polymers. IV. 1 Critical Phenomena in Polyvinyl Alcohol-acetate Copolymer Solutions.” J. Am. Chem. Soc., 73 (1) 289–293 (1951)

    Article  CAS  Google Scholar 

  278. Langer, R, Peppas, NA, “Advances in Biomaterials, Drug Delivery, and Bionanotechnology.” AIChE J., 49 (12) 2990–3006 (2003)

    Article  ADS  CAS  Google Scholar 

  279. Baker, JP, Hong, LH, Blanch, HW, Prausnitz, JM, “Effect of Initial Total Monomer Concentration on the Swelling Behavior of Cationic Acrylamide-Based Hydrogels.” Macromolecules, 27 (6) 1446–1454 (1994)

    Article  ADS  CAS  Google Scholar 

  280. Yin, Y, Yang, Y, Xu, H, “Swelling Behavior of Hydrogels for Colon-site Drug Delivery.” J. Appl. Polym. Sci., 83 (13) 2835–2842 (2002)

    Article  CAS  Google Scholar 

  281. Hoshino, KI, Nakajima, T, Matsuda, T, Sakai, T, Gong, JP, “Network Elasticity of a Model Hydrogel as a Function of Swelling Ratio: From Shrinking to Extreme Swelling States.” Soft Matter, 14 (47) 9693–9701 (2018)

    Article  ADS  CAS  PubMed  Google Scholar 

  282. Li, A, Benetti, EM, Tranchida, D, Clasohm, JN, Schönherr, H, Spencer, ND, “Surface-Grafted, Covalently Cross-Linked Hydrogel Brushes with Tunable Interfacial and Bulk Properties.” Macromolecules, 44 (13) 5344–5351 (2011)

    Article  ADS  CAS  Google Scholar 

  283. Fumio, U, Hiroshi, Y, Kumiko, N, Sachihiko, N, Kenji, S, Yasunori, M, “Swelling and Mechanical Properties of Poly(vinyl alcohol) Hydrogels.” Int. J. Pharm., 58 (2) 135–142 (1990)

    Article  Google Scholar 

  284. Arifuzzaman, M, Wu, ZL, Kurokawa, T, Kakugo, A, Gong, JP, “Swelling-induced Long-range Ordered Structure Formation in Polyelectrolyte Hydrogel.” Soft Matter, 8 (31) 8060–8066 (2012)

    Article  ADS  CAS  Google Scholar 

  285. Guvendiren, M, Yang, S, Burdick, JA, “Swelling-induced Surface Patterns in Hydrogels with Gradient Crosslinking Density.” Adv. Funct. Mater., 19 (19) 3038–3045 (2009)

    Article  CAS  Google Scholar 

  286. Dahlström, M, Jonsson, H, Jonsson, PR, Elwing, H, “Surface Wettability as a Determinant in the Settlement of the Barnacle Balanus improvisus (DARWIN).” J. Exp. Marine Biol. Ecol., 305 (2) 223–232 (2004)

    Article  Google Scholar 

  287. Eshet, I, Freger, V, Kasher, R, Herzberg, M, Lei, J, Ulbricht, M, “Chemical and Physical Factors in Design of Antibiofouling Polymer Coatings.” Biomacromolecules, 12 (7) 2681–2685 (2011)

    Article  CAS  PubMed  Google Scholar 

  288. Yang, WJ, Neoh, KG, Kang, ET, Teo, SLM, Rittschof, D, “Polymer Brush Coatings for Combating Marine Biofouling.” Prog. Polym. Sci., 39 (5) 1017–1042 (2014)

    Article  CAS  Google Scholar 

  289. Leckband, D, Sheth, S, Halperin, A, “Grafted Poly(ethylene oxide) Brushes as Nonfouling Surface Coatings.” J. Biomater. Sci. Polym. Ed., 10 (10) 1125–1147 (1999)

    Article  CAS  PubMed  Google Scholar 

  290. Buzzacchera, I, Vorobii, M, Kostina, NY, de Los Santos Pereira, A, Riedel, T, Bruns, M, Ogieglo, W, Möller, M, Wilson, CJ, Rodriguez-Emmenegger, C, “Polymer Brush-functionalized Chitosan Hydrogels as Antifouling Implant Coatings.” Biomacromolecules, 18 (6) 1983–1992 (2017)

  291. Bozukova, D, Pagnoulle, C, De Pauw-Gillet, MC, Ruth, N, Jérôme, R, Jérôme, C, “Imparting Antifouling Properties of Poly(2-hydroxyethyl methacrylate) Hydrogels by Grafting Poly(oligoethylene glycol methyl ether acrylate).” Langmuir, 24 (13) 6649–6658 (2008)

    Article  CAS  PubMed  Google Scholar 

  292. Lin, Y, Wang, L, Zhou, J, Ye, L, Hu, H, Luo, Z, Zhou, L, “Surface Modification of PVA Hydrogel Membranes with Carboxybetaine Methacrylate via PET-RAFT for Anti-fouling.” Polymer, 162 80–90 (2019)

    Article  CAS  Google Scholar 

  293. Wang, X, Yan, S, Song, L, Shi, H, Yang, H, Luan, S, Huang, Y, Yin, J, Khan, AF, Zhao, J, “Temperature-responsive Hierarchical Polymer Brushes Switching from Bactericidal to Cell Repellency.” ACS Appl. Mater. Interfaces, 9 (46) 40930–40939 (2017)

    Article  CAS  PubMed  Google Scholar 

  294. Zhang, R, Zhang, L, Tian, N, Ma, S, Liu, Y, Yu, B, Pei, X, Zhou, F, “The Tethered Fibrillar Hydrogels Brushes for Underwater Antifouling.” Adv. Mater. Interfaces, 4 (7) 1601039 (2017)

    Article  Google Scholar 

  295. Chen, W, Hao, D, Guo, X, Hao, W, Jiang, L, “Preventing Diatom Adhesion using a Hydrogel with an Orthosilicic Acid Analog as a Deceptive Food.” J. Mater. Chem. A, 6 (39) 19125–19132 (2018)

    Article  CAS  Google Scholar 

  296. Cassé, F, Stafslien, SJ, Bahr, JA, Daniels, J, Finlay, JA, Callow, JA, Callow, ME, “Combinatorial Materials Research Applied to the Development of New Surface Coatings V. Application of a Spinning Water-jet for the Semi-high Throughput Assessment of the Attachment Strength of Marine Fouling Algae.” Biofouling, 23 (2) 121–130 (2007)

    Article  PubMed  Google Scholar 

  297. Starr, RC, Zeikus, JA, “UTEX—The Culture Collection of Algae at the University of Texas at Austin 1993 List of Cultures 1.” J. Phycol., 29 1–106 (1993)

    Article  Google Scholar 

  298. Stafslien, SJ, Bahr, JA, Daniels, JW, Wal, LV, Nevins, J, Smith, J, Schiele, K, Chisholm, B, “Combinatorial Materials Research Applied to the Development of New Surface Coatings VI: An Automated Spinning Water Jet Apparatus for the High-throughput Characterization of Fouling-release Marine Coatings.” Rev. Sci. Inst., 78(7) (2007)

  299. Callow, ME, Callow, JA, Conlan S, Clare, AS, Stafslien, S, “Efficacy Testing of Nonbiocidal and Fouling‐release Coatings.” Biofouling Methods, 291–316 (2014)

  300. Stafslien, S, Daniels, J, Mayo, B, Christianson, D, Chisholm, B, Ekin, A, Webster, D, Swain, G, “Combinatorial Materials Research Applied to the Development of New Surface Coatings IV. A High-throughput Bacterial Biofilm Retention and Retraction Assay for Screening Fouling-release Performance of Coatings.” Biofouling, 23 (1) 45–54 (2007)

    Article  CAS  PubMed  Google Scholar 

  301. Rittschof, D, Orihuela, B, Stafslien, S, Daniels, J, Christianson, D, Chisholm, B, Holm, E, “Barnacle Reattachment: A Tool for Studying Barnacle Adhesion.” Biofouling, 24 (1) 1–9 (2008)

    Article  CAS  PubMed  Google Scholar 

  302. Stafslien, S, Daniels, J, Bahr, J, Chisholm, B, Ekin, A, Webster, D, Orihuela, B, Rittschof, D, “An Improved Laboratory Reattachment Method for the Rapid Assessment of Adult Barnacle Adhesion Strength to Fouling-release Marine Coatings.” J. Coat. Technol. Res., 9 651–665 (2012)

    Article  CAS  Google Scholar 

  303. Leonardi, A, Zhang, AC, Duzen, N, Aldred, N, Finlay, JA, Clarke, JL, Clare, AS, Segalman, RA, Ober, CK, “Amphiphilic Nitroxide-bearing Siloxane-based Block Copolymer Coatings for Enhanced Marine Fouling Release.” ACS Appl. Mater. Interfaces, 13 (24) 28790–28801 (2021)

    Article  CAS  PubMed  Google Scholar 

  304. Benda, J, Narikiyo, H, Stafslien, SJ, VanderWal, LJ, Finlay, JA, Aldred, N, Clare, AS, Webster, DC, “Studying the Effect of Pre-polymer Composition and Incorporation of Surface-modifying Amphiphilic Additives on the Fouling-release Performance of Amphiphilic Siloxane-polyurethane Coatings.” ACS Appl. Mater. Interfaces, 14 (32) 37229–37247 (2022)

    Article  CAS  PubMed  Google Scholar 

  305. Swain, G, Erdogan, C, Foy, L, Gardner, H, Harper, M, Hearin, J, Hunsucker, KZ, Hunsucker, JT, Lieberman, K, Nanney, M, Ralston, E, “Proactive In-water Ship Hull Grooming as a Method to Reduce the Environmental Footprint of Ships.” Front. Marine Sci., 8 808549 (2022)

    Article  Google Scholar 

  306. Vahabi, H, Vallabhuneni, S, Hedayati, M, Wang, W, Krapf, D, Kipper, MJ, Miljkovic, N, Kota, AK, “Designing Non-textured, All-solid, Slippery Hydrophilic Surfaces.” Matter, 5 (12) 4502–4512 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Rubinstein, M, Colby, RH, Polymer Physics. Oxford University Press, New York (2003)

    Book  Google Scholar 

  308. Buddingh, JV, Hozumi, A, Liu, G, “Liquid and Liquid-like Surfaces/Coatings that Readily Slide Fluids.” Prog. Polym. Sci., 123 101468 (2021)

    Article  CAS  Google Scholar 

  309. Wang, L, McCarthy, TJ, “Covalently Attached Liquids: Instant Omniphobic Surfaces with Unprecedented Repellency.” Angew. Chem. Int. Ed., 55 (1) 244–248 (2016)

    Article  CAS  Google Scholar 

  310. Lu, G, Tian, S, Li, J, Xu, Y, Liu, S, Pu, J, “Fabrication of Bio-based Amphiphilic Hydrogel Coating with Excellent Antifouling and Mechanical Properties.” Chem. Eng. J., 409 128134 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Financial support was provided by the National Science Foundation and the American Society of Engineering Education. Grant No: 2127509

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Kio.

Ethics declarations

Conflict of interest

The authors affirm that they have no competing financial interests or personal ties that could have affected the work included in this paper

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kio, M., Klauda, J. Advances in emerging hydrogel fouling-release coatings for marine applications. J Coat Technol Res (2024). https://doi.org/10.1007/s11998-023-00895-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11998-023-00895-z

Keywords

Navigation