Skip to main content
Log in

Development of a polydimethylsiloxane–Eucalyptus essential oil antibacterial coating

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

This study presents a novel antibacterial surface comprised of Eucalyptus essential oil trapped within the micro-nanostructures of a polydimethylsiloxane (PDMS) substrate. A wettability study showed that the replication of the micro-nanostructure on PDMS led to a superhydrophobic behavior of the surface. The SEM images revealed that the micro-nanostructure increased the contact angle of the PDMS surfaces. Fourier transform infrared spectroscopy analysis led to the conclusion that the essential oil was entrapped in the PDMS, thereby promoting its antibacterial activity. Multiple tests demonstrate the antibacterial ability of these superhydrophobic surfaces in preventing the establishment of Escherichia coli and Bacillus cereus bacterial colonies and biofilms. These surfaces reduce contamination by 99.98% when exposed to a bacteria-rich water droplet. Our observations highlight the role of Eucalyptus essential oil in limiting initial bacterial growth and biofilm formation on exposed surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Maillard, JY, Bloomfield, SF, Courvalin, P, Essack, SY, Gandra, S, Gerba, CP, Rubino, JR, Scott, EA, “Reducing Antibiotic Prescribing and Addressing the Global Problem of Antibiotic Resistance by Targeted Hygiene in the Home and Everyday Life Settings: A Position Paper.” Am. J. Infect. Control, 48 (9) 1090–1099. https://doi.org/10.1016/j.ajic.2020.04.011 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  2. Forson, AM, van der Mei, HC, Sjollema, J, “Impact of Solid Surface Hydrophobicity and Micrococcal Nuclease Production on Staphylococcus aureus Newman Biofilms.” Sci. Rep., 10 12093. https://doi.org/10.1038/s41598-020-69084-x (2020)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tremblay, YDN, Hathroubi, S, Jacques, M, “Les Biofilms Bactériens: Leur Importance en Santé Animale et en Santé Publique.” Can. J. Vet. Res., 78 110–116 (2014)

    PubMed  PubMed Central  Google Scholar 

  4. Li, YH, Tian, X, “Quorum Sensing and Bacterial Social Interactions in Biofilms.” Sensors, 12 (3) 2519–2538. https://doi.org/10.3390/s120302519 (2012)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Abdallah, M, Benoliel, C, Drider, D, Dhulster, P, Chihib, N-E, “Biofilm Formation and Persistence on Abiotic Surfaces in the Context of Food and Medical Environments.” Arch. Microbiol., 196 (7) 453–472. https://doi.org/10.1007/s00203-014-0983-1 (2014)

    Article  CAS  PubMed  Google Scholar 

  6. Douarche, C, Bailleux, V, Even, C, Allain, J-M, Regeard, C, Raspaud, E, “La Mécanique des Biofilms à la Surface de Liquides.” Reflets Phys., 56 20–24. https://doi.org/10.1051/refdp/201856020 (2018)

    Article  Google Scholar 

  7. Flemming, HC, Meier, M, Schild, T, “Mini-Review: Microbial Problems in Paper Production.” Biofouling, 29 683–696. https://doi.org/10.1080/08927014.2013.798865 (2013)

    Article  PubMed  Google Scholar 

  8. Galié, S, García-Gutiérrez, C, Miguélez, EM, Villar, CJ, Lombó, F, “Biofilms in the Food Industry: Health Aspects and Control Methods.” Front. Microbiol., 9 898. https://doi.org/10.3389/fmicb.2018.00898 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kanematsu, H, Barry, DM, Formation and Control of Biofilm in Various Environments. Springer Nature Singapore Pte. Ltd., Singapore (2020)

    Book  Google Scholar 

  10. Avossa, J, Bifulco, A, Amendola, E, Gesuele, F, Oscurato, SL, Gizaw, Y, Mensitieri, G, Branda, F, “Forming Nanostructured Surfaces Through Janus Colloidal Silica Particles with Nanowrinkles: A New Strategy to Superhydrophobicity.” Appl. Surf. Sci., 465 73–81. https://doi.org/10.1016/j.apsusc.2018.09.131 (2019)

    Article  ADS  CAS  Google Scholar 

  11. Bregnocchi, A, Jafari, R, Momen, G, “Design Strategies for Antiviral Coatings and Surfaces: A Review.” Appl. Surf. Sci. Adv., 8 100224. https://doi.org/10.1016/j.apsadv.2022.100224 (2022)

    Article  Google Scholar 

  12. Gogolides, E, Ellinas, K, Tserepi, A, “Hierarchical Micro and Nano Structured, Hydrophilic, Superhydrophobic and Superoleophobic Surfaces Incorporated in Microfluidics, Microarrays and Lab on Chip Microsystems.” Microelectron. Eng., 132 135–155. https://doi.org/10.1016/j.mee.2014.10.002 (2015)

    Article  CAS  Google Scholar 

  13. Zhang, X, Järn, M, Peltonen, J, Pore, V, Vuorinen, T, Levänen, E, Mäntylä, T, “Analysis of Roughness Parameters to Specify Superhydrophobic Antireflective Boehmite Films Made by the Sol-Gel Process.” J. Eur. Ceram. Soc., 28 (11) 2177–2181. https://doi.org/10.1016/j.jeurceramsoc.2008.02.020 (2008)

    Article  CAS  Google Scholar 

  14. Polizos, G, Tuncer, E, Qiu, X, Aytug, T, Kidder, MK, Messman, JM, Sauers, I, “Nonfunctionalized Polydimethyl Siloxane Superhydrophobic Surfaces Based on Hydrophobic-Hydrophilic Interactions.” Langmuir, 27 (6) 2953–2957. https://doi.org/10.1021/la1042712 (2011)

  15. Long, J, Pan, L, Fan, P, Gong, D, Jiang, D, Zhang, H, Li, L, Zhong, M, “Cassie-State Stability of Metallic Superhydrophobic Surfaces with Various Micro/Nanostructures Produced by a Femtosecond Laser.” Langmuir, 32 (4) 1065–1072. https://doi.org/10.1021/acs.langmuir.5b04329 (2016)

    Article  CAS  PubMed  Google Scholar 

  16. Privett, BJ, Youn, J, Hong, SA, Lee, J, Han, J, Shin, JH, Schoenfisch, MH, “Antibacterial Fluorinated Silica Colloid Superhydrophobic Surfaces.” Langmuir, 27 (15) 9597–9601. https://doi.org/10.1021/la201801e (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chauhan, P, Kumar, A, Bhushan, B, “Self-Cleaning, Stain-Resistant and Anti-Bacterial Superhydrophobic Cotton Fabric Prepared by Simple Immersion Technique.” J. Colloid Interface Sci., 535 66–74. https://doi.org/10.1016/j.jcis.2018.09.087 (2019)

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Shateri Khalil-Abad, M, Yazdanshenas, ME, “Superhydrophobic Antibacterial Cotton Textiles.” J. Colloid Interface Sci., 351 (1) 293–298. https://doi.org/10.1016/j.jcis.2010.07.049 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Adlhart, C, Verran, J, Azevedo, NF, Olmez, H, Keinänen-Toivola, MM, Gouveia, I, Melo, LF, Crijns, F, “Surface Modifications for Antimicrobial Effects in the Healthcare Setting: A Critical Overview.” J. Hosp. Infect., 99 (3) 239–249. https://doi.org/10.1016/j.jhin.2018.01.018 (2018)

    Article  CAS  PubMed  Google Scholar 

  20. Ellinas, K, Kefallinou, D, Stamatakis, K, Gogolides, E, Tserepi, A, “Is There a Threshold in the Antibacterial Action of Superhydrophobic Surfaces?” ACS Appl. Mater. Interfaces, 9 (45) 39781–39789. https://doi.org/10.1021/acsami.7b11402 (2017)

    Article  CAS  PubMed  Google Scholar 

  21. Qian, H, Li, M, Li, Z, Lou, Y, Huang, L, Zhang, D, Xu, D, Du, C, Lu, L, Gao, J, “Mussel-Inspired Superhydrophobic Surfaces with Enhanced Corrosion Resistance and Dual-Action Antibacterial Properties.” Mater. Sci. Eng. C, 80 566–577. https://doi.org/10.1016/j.msec.2017.07.002 (2017)

    Article  CAS  Google Scholar 

  22. Karunakaran, RG, Lu, C-H, Zhang, Z, Yang, S, “Highly Transparent Superhydrophobic Surfaces from the Coassembly of Nanoparticles (≤100 nm).” Langmuir, 27 (8) 4594–4602. https://doi.org/10.1021/la104067c (2011)

    Article  CAS  PubMed  Google Scholar 

  23. Zhang, M, Wang, P, Sun, H, Wang, Z, “Superhydrophobic Surface with Hierarchical Architecture and Bimetallic Composition for Enhanced Antibacterial Activity.” ACS Appl. Mater. Interfaces, 6 (24) 22108–22115. https://doi.org/10.1021/am505490w (2014)

    Article  CAS  PubMed  Google Scholar 

  24. Masyita, A, Mustika Sari, R, Dwi Astuti, A, Yasir, B, Rahma Rumata, N, Emran, TB, Nainu, F, Simal-Gandara, J, “Terpenes and Terpenoids as Main Bioactive Compounds of Essential Oils, Their Roles in Human Health and Potential Application as Natural Food Preservatives.” Food Chem. X, 13 100217. https://doi.org/10.1016/j.fochx.2022.100217 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pandey, SK, Bhandari, S, Sarma, N, Begum, T, Munda, S, Baruah, J, Gogoi, R, Haldar, S, Lal, M, “Essential Oil Compositions, Pharmacological Importance and Agro Technological Practices of Patchouli (Pogostemon cablin Benth.): A Review.” J. Essential Oil Bear. Plants, 24 (6) 1212–1226. https://doi.org/10.1080/0972060X.2021.1995511 (2021)

    Article  CAS  Google Scholar 

  26. Wińska, K, Mączka, W, Łyczko, J, Grabarczyk, M, Czubaszek, A, Szumny, A, “Essential Oils as Antimicrobial Agents—Myth or Real Alternative?” Molecules (Basel, Switzerland), 24 (11) 2130. https://doi.org/10.3390/molecules24112130 (2019)

    Article  CAS  PubMed  Google Scholar 

  27. Dhifi, W, Bellili, S, Jazi, S, Bahloul, N, Mnif, W, “Essential Oils’ Chemical Characterization and Investigation of Some Biological Activities: A Critical Review.” Medicines (Basel, Switzerland), 3 (4) 25. https://doi.org/10.3390/medicines3040025 (2016)

    Article  CAS  PubMed  Google Scholar 

  28. Mieres-Castro, D, Ahmar, S, Shabbir, R, Mora-Poblete, F, “Antiviral Activities of Eucalyptus Essential Oils: Their Effectiveness as Therapeutic Targets Against Human Viruses.” Pharmaceuticals, 14 (12) 1210. https://doi.org/10.3390/ph14121210 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ait-Ouazzou, A, Cherrat, L, Espina, L, Lorán, S, Rota, C, Pagán, R, “The Antimicrobial Activity of Hydrophobic Essential Oil Constituents Acting Alone or in Combined Processes of Food Preservation.” Innov. Food Sci. Emerg. Technol., 12 (3) 320–329. https://doi.org/10.1016/j.ifset.2011.04.004 (2011)

    Article  CAS  Google Scholar 

  30. Silva, FAB, Chagas-Silva, FA, Florenzano, FH, Pissetti, FL, “Poly(dimethylsiloxane) and Poly[vinyltrimethoxysilane-co-2-(dimethylamino) ethyl methacrylate] Based Cross-Linked Organic-Inorganic Hybrid Adsorbent for Copper(II) Removal from Aqueous Solutions.” J. Braz. Chem. Soc., 27 (12) 2181–2191. https://doi.org/10.5935/0103-5053.20160110 (2016)

    Article  CAS  Google Scholar 

  31. Bardelli, T, Marano, C, Briatico Vangosa, F, “Polydimethylsiloxane Crosslinking Kinetics: A Systematic Study on Sylgard184 Comparing Rheological and Thermal Approaches.” J. Appl. Polym. Sci., 138 (39) 51013. https://doi.org/10.1002/app.51013 (2021)

    Article  CAS  Google Scholar 

  32. Duffy, DC, Olivier, JCM, Schueller, JA, Whitesides, GM, “Rapid Prototyping of Microfluidic Systems in Poly(demethylsiloxane).” Anal. Chem., 70 4974–4984. https://doi.org/10.1021/ac980656z (1998)

    Article  CAS  PubMed  Google Scholar 

  33. Duffy, DC, Brittain, JA, Whitesides, GM, “Rapid Prototyping of Microfluidic Switches in Poly(dimethylsiloxane) and Their Actuation by Electro-Osmotic Flow.” J. Micromech. Microeng., 9 211–217. https://doi.org/10.1088/0960-1317/9/3/301 (1999)

    Article  ADS  CAS  Google Scholar 

  34. Koh, KS, Chin, J, Chia, J, Chiang, CL, “Quantitative Studies on PDMS-PDMS Interface Bonding with Piranha Solution and Its Swelling Effect.” Micromachines, 3 427–441. https://doi.org/10.3390/mi3020427 (2012)

    Article  Google Scholar 

  35. Kwak, Y, Kang, Y, Park, W, Jo, E, Kim, J, “Fabrication of Fine-Pored Polydimethylsiloxane Using an Isopropyl Alcohol and Water Mixture for Adjustable Mechanical, Optical, and Thermal Properties.” RSC Adv., 11 18061–18067. https://doi.org/10.1039/D1RA02466C (2021)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hidouri, S, Jafari, R, Fournier, C, Girard, C, Momen, G, “Formulation of Nanohybrid Coating Based on Essential Oil and Fluoroalkyl Silane for Antibacterial Superhydrophobic Surfaces.” Appl. Surf. Sci. Adv., 9 100252. https://doi.org/10.1016/j.apsadv.2022.100252 (2022)

    Article  Google Scholar 

  37. Johnson LM, Gao L, Shields CW, Smith M, Efimenko K, Cushing K, Genzer J, López GP. “Elastomeric Microparticles for Acoustic Mediated Bioseparations.” J. Nanobiotechnology, 11 22. https://doi.org/10.1186/1477-3155-11-22 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang, L, Fu, J, Jiang, X, Li, D, “Solid-Phase Extraction Based on PDMS/Ionic Liquid Sponge Followed by Gas Chromatography-Mass Spectrometry for Rapid and Sensitive Determination of Volatile Components in Lavender.” Phytochem. Anal., 34 (2) 225–239 (2023)

    Article  CAS  PubMed  Google Scholar 

  39. Miranda, I, Souza, A, Sousa, P, Ribeiro, J, Castanheira, EMS, Lima, R, Minas, G, “Properties and Applications of PDMS for Biomedical Engineering: A Review.” J. Funct. Biomater., 13 (1) 2. https://doi.org/10.3390/jfb13010002 (2022)

    Article  CAS  Google Scholar 

  40. Ariati, R, Sales, F, Souza, A, Lima, RA, Ribeiro, J, “Polydimethylsiloxane Composites Characterization and Its Applications: A Review.” Polymers, 13 (23) 4258. https://doi.org/10.3390/polym13234258 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yang, L, Hao, X, Wang, C, Zhang, B, Wang, W, “Rapid and Low Cost Replication of Complex Microfluidic Structures with PDMS Double Casting Technology.” Microsyst. Technol., 20 (10) 1933–1940. https://doi.org/10.1007/s00542-013-2004-8 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Catherine Gerard and Claire Fournier for their assistance with the antibacterial tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Slah Hidouri.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hidouri, S., Jafari, R. & Momen, G. Development of a polydimethylsiloxane–Eucalyptus essential oil antibacterial coating. J Coat Technol Res 21, 747–760 (2024). https://doi.org/10.1007/s11998-023-00854-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-023-00854-8

Keywords

Navigation