Skip to main content
Log in

Synthesis and characterization of high-temperature-resistant and optically transparent polyimide coatings for potential applications in quartz optical fibers protection

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

A series of optically transparent and colorless polyimide (CPI) coatings for quartz optical fibers (QOFs) protection were prepared by the copolymerization of two aromatic dianhydrides, 3,3′,4,4′-biphenyltetracarboxylic acid dianhydride (BPDA) and 2,2′-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride (6FDA), and 2,2′-bis(trifluoromethyl)benzidine (TFMB) by a two-step polymerization procedure via the soluble poly(amic acid) (PAA) precursors followed by thermal imidization at elevated temperatures. Various QOFs with the flexible and tough CPI coatings were successfully fabricated. Scanning electron microscopy measurements revealed that the CPI coatings tightly adhered to the quartz optical fibers without adding any adhesion promoters. The CPI coatings exhibited good optical transparency with the transmittance higher than 83% at 450 nm at a thickness of 10 μm, high lightness (L* > 93), low yellow indices (b* as low as 2.66), and low turbidity (haze as low as 0.57%). In addition, the CPI coatings exhibited good thermal and dimensional stability with glass transition temperatures (Tg) higher than 349°C and coefficients of linear thermal expansion (CTE) as low as 6.8 × 10−6/K in the range of 50–300°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Paschotta, R, “Optical Fiber Technology-Physical Principles and Applications of Different Types of Optical Fibers.” Optik & Photonik, 3 52–55 (2008)

    Article  Google Scholar 

  2. Gu, HD, Dong, HJ, Zhang, GY, He, J, Pan, HL, “Effects of Polymer Coatings on Temperature Sensitivity of Brillouin Frequency Shift within Double-Coated Fibers.” IEEE Sens. J., 13 864–869 (2013)

    Article  Google Scholar 

  3. Lin, Y, Gong, Y, Wu, Y, Wu, HJ, “Polyimide-Coated Fiber Bragg Grating for Relative Humidity Sensing.” Photonic Sens., 5 60–66 (2015)

    Article  Google Scholar 

  4. Chai, J, Liu, Q, Liu, JX, Zhang, DD, “Optical Fiber Sensors Based on Novel Polyimide for Humidity Monitoring of Building Materials.” Opt. Fiber Technol., 41 40–47 (2018)

    Article  Google Scholar 

  5. Lavrov, VS, Kulikov, AV, Plotnikov, MU, Efimov, ME, Varzhel, SV, “Study of Influence of the Fiber Optic Coatings Parameters in Optical Acoustic Sensitivity.” J. Phys. Confer. Ser., 735 012014 (2016)

    Article  Google Scholar 

  6. Bremer, K, Wollweber, M, Weigand, F, Rahlves, M, Kuhne, M, Helbig, R, Roth, B, “Fibre Optic Sensors for the Structural Health Monitoring of Building Structures.” Proc. Technol., 26 524–529 (2016)

    Article  Google Scholar 

  7. Kurkjian, CR, Krause, JT, Matthewson, MJ, “Strength and Fatigue of Silica Optical Fibers.” J. Lightwave Technol., 7 1360–1370 (1989)

    Article  Google Scholar 

  8. Wei, TS, Skutnik, BJ, “Effect of Coating on Fatigue Behavior of Optical Fiber.” J. Non-cryst. Solid, 102 100–105 (1988)

    Article  Google Scholar 

  9. Mrotek, JL, Matthewson, MJ, Kurkjian, CR, “Diffusion of Moisture through Optical Fiber Coatings.” J. Lightw. Technol., 19 988–993 (2001)

    Article  Google Scholar 

  10. Mrotek, JL, Matthewson, MJ, Kurkjian, CR, “Diffusion of Moisture through Fatigue- and Aging-Resistant Polymer Coatings on Lightguide Fibers.” J. Lightw. Technol., 21 1775–1778 (2003)

    Article  Google Scholar 

  11. Stolov, AA, Simoff, DA, Li, J, “Thermal Stability of Specialty Optical Fibers.” J. Lightw. Technol., 26 3443–3451 (2008)

    Article  Google Scholar 

  12. Brabec, L, Sysel, P, Plsek, J, Kocirik, M, Dickerson, JH, “Polyamic Acid: Nanoprecipitation and Electrophoretic Deposition on Porous Supports.” J. Coat. Technol. Res., (2017). https://doi.org/10.1007/s11998-017-0004-9

    Google Scholar 

  13. Liaw, DJ, Wang, KL, Huang, YC, Lee, KR, Lai, JY, Ha, CS, “Advanced Polyimide Materials: Synthesis, Physical Properties and Applications.” Prog. Polym. Sci., 37 907–974 (2012)

    Article  Google Scholar 

  14. Semjonov, SL, Sapozhnikov, DA, Erin, DY, Zabegaeva, ON, Kushtavkina, IA, Nishchev, KN, Vygodskii, YS, Dianov, EM, “High-Temperature Polyimide Coating for Optical Fibres.” Quantum Electron., 45 330–332 (2015)

    Article  Google Scholar 

  15. Sapozhnikov, DA, Bayminov, BA, Zabegaeva, ON, Alexeeva, DD, Semjonov, SL, Kosolapov, AF, Plastinin, EA, Buzin, MI, Vygodskii, YS, “The Influence of Organosoluble (co)Polyimides Side Functionalization and Drawing Parameters on the Optical Fibre Coatings Formation and Properties.” High Perform. Polym., 29 663–669 (2017)

    Article  Google Scholar 

  16. Kosolapov, AF, Plastinin, EA, Semjonov, SL, Bayminov, BA, Sapozhnikov, DA, Alekseeva, DD, Vygodskii, YS, “Advanced Polyimide Varnish for Optical Fiber Coating Fabrication.” Bull. Lebedev Phys. Inst., 4 159–162 (2017)

    Article  Google Scholar 

  17. Huang, L, Dyer, RS, Lago, RJ, Stolov, AA, Li, J, “Mechanical Properties of Polyimide Coated Optical Fibers at Elevated Temperatures.” Proc. SPIE, 9702 9702Y-1 (2016)

    Google Scholar 

  18. Alwis, L, Sun, T, Grattan, KV, “Analysis of Polyimide-Coated Optical Fiber Long-Period Grating-Based Relative Humidity Sensor.” IEEE Sens. J., 13 767–771 (2013)

    Article  Google Scholar 

  19. Huang, L, Dyer, RS, Li, L, “Fatigue Behavior of Polyimide Coated Optical Fibers at Elevated Temperatures.” Proc. SPIE, 10100 101001J (2017)

    Article  Google Scholar 

  20. Ni, HJ, Liu, JG, Wang, ZH, Yang, SY, “A Review on Colorless and Optically Transparent Polyimide Films: Chemistry, Process and Engineering Applications.” J. Ind. Eng. Chem., 28 16–27 (2015)

    Article  Google Scholar 

  21. Renoirt, JM, Zhang, C, Debliquy, M, Olivier, MG, Megret, P, Caucheteur, C, “High-Refractive Index Transparent Coatings Enhance the Optical Fiber Cladding Modes Refractometric Sensitivity.” Opt. Exp., 21 29073–29082 (2013)

    Article  Google Scholar 

  22. Deets GL, Hattori T, “Essentially Colorless, Transparent Polyimide Coatings and Films.” US Patent 6232428, 2001

  23. Guo, YZ, Shen, DX, Ni, HJ, Liu, JG, Yang, SY, “Organosoluble Semi-Alicyclic Polyimides Derived from 3,4-Dicarboxy-1,2,3,4-Tetrahydro-6-Tert-Butyl-1-Naphthalene Succinic Dianhydride and Aromatic Diamines: Synthesis, Characterization and Thermal Degradation Investigation.” Prog. Org. Coat., 76 768–777 (2013)

    Article  Google Scholar 

  24. Li, Z, Song, HW, He, MH, Liu, JG, Yang, SY, “Atomic Oxygen-Resistant and Transparent Polyimide Coatings from [3,5-bis(3-Aminophenoxy)Phenyl]Diphenylphosphine Oxide and Aromatic Dianhydrides: Preparation and Characterization.” Prog. Org. Coatings, 75 49–58 (2012)

    Article  Google Scholar 

  25. Guo, YZ, Song, HW, Zhai, L, Liu, JG, Yang, SY, “Synthesis and Characterization of Novel Semi-Alicyclic Polyimides from Methyl-Substituted Tetralin Dianhydride and Aromatic Diamines.” Polym. J., 44 718–723 (2012)

    Article  Google Scholar 

  26. Wubbeler, G, Acosta, JC, Elster, C, “Evaluation of Uncertainties for CIELAB Color Coordinates.” Color Res. Appl., 42 564–570 (2017)

    Article  Google Scholar 

  27. Licari, JJ, Hughes, LA, Handbook of Polymer Coatings for Electronics, 2nd ed., p. 370. Noyes Publications, New Jesery (1990)

    Google Scholar 

  28. Koning, C, Lansbergen, A, Koldijk, F, Hendriks, H, Papegaaij, A, Smabers, R, Buijsen, P, Gehrels, C, Reuvers, B, Herrema, J, “Novel Renewable Alkyd Resins Based on Imide Structures.” J. Coat. Technol. Res., 14 (4) 783–789 (2017)

    Article  Google Scholar 

  29. Wu, Z, Zhang, A, Shen, D, Leland, M, Harris, FW, Cheng, SZD, “The Crystal Structure and Thermal Shrinkage Properties of Aromatic Polyimide Fibers.” J. Therm. Anal., 46 719–731 (1996)

    Article  Google Scholar 

  30. Liu, JG, Nakamura, Y, Shibasaki, Y, Ando, S, Ueda, M, “High Refractive Index Polyimides Derived from 2,7-Bis(4-Aminophenylenesulfanyl)Thianthrene and Aromatic Dianhydrides.” Macromolecules, 40 4614–4620 (2007)

    Article  Google Scholar 

  31. Liu, JG, Ueda, M, “High Refractive Index Polymers: Fundamental Research and Practical Applications.” J. Mater. Chem., 19 8907–8919 (2009)

    Article  Google Scholar 

  32. Hasegawa, M, “Development of Solution-Processable, Optically Transparent Polyimides with Ultra-Low Linear Coefficients of Thermal Expansion.” Polymers, 9 520 (2017)

    Article  Google Scholar 

  33. Jewell, JM, “Thermooptic Coefficients of Some Standard Reference Material Glassed.” J. Am. Ceram. Soc., 74 1689–1691 (1991)

    Article  Google Scholar 

  34. Hasegawa, M, Matano, T, Shindo, Y, Sugimura, T, “Spontaneous Molecular Orientation of Polyimides Induced by Thermal Imidization. 2. In-plane Orientation.” Macromolecules, 29 7897–7909 (1996)

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from the Fundamental Research Funds of China University of Geosciences (No. 2652017345) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingang Liu or Xiumin Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Qu, L., Liu, J. et al. Synthesis and characterization of high-temperature-resistant and optically transparent polyimide coatings for potential applications in quartz optical fibers protection. J Coat Technol Res 16, 511–520 (2019). https://doi.org/10.1007/s11998-018-0129-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-018-0129-5

Keywords

Navigation