Skip to main content
Log in

Synthesis of P3HT base semiconducting hybrid films and their photocatalytic properties

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Regioregular poly(3-hexylthiophene) (rr-P3HT) was employed as the supporting polymeric matrix to generate hybrid composite films by mixing with natural zeolites, ZnO, and TiO2. Several P3HT-based hybrid composite films were deposited by a convenient method, characterized, and applied to the photocatalytic degradation of rhodamine 6G (R6G). The photocatalytic activity of the hybrid composite films was analyzed by degradation of R6G solutions (blank) under UV radiation (365 nm) and sunlight. It was observed that the photocatalytic activity of the composite films was higher as compared to the neat films of P3HT. This behavior was attributed to the extended photoresponse of the coupled organic–inorganic semiconductor system, facilitating separation of photogenerated carriers due to the strong interfacial interaction. The highest proportion of decolorization ratio of R6G obtained was close to 100%, and it was observed for the composite films P3HT/TiO2/ZnO and P3HT/chabazite/TiO2/ZnO under UV irradiation. Under sunlight, 99% and 97% decolorization ratios were obtained for P3HT/TiO2 and P3HT/TiO2/ZnO composite films, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Vaiano, V, Sacco, O, Sannino, D, Ciambelli, P, “Process Intensification in the Removal of Organic Pollutants from Wastewater Using Innovative Photocatalysts Obtained Coupling Zinc Sulfide-Based Phosphors with Nitrogen-Doped Semiconductors.” J. Clean. Prod., 100 208–211 (2015). https://doi.org/10.1016/j.jclepro.2015.03.041

    Article  Google Scholar 

  2. Prihod’ko, R, Stolyarova, I, Gündüz, G, Taran, O, Yashnik, S, Parmon, V, Goncharuk, V, “Fe-Exchanged Zeolites as Materials for Catalytic Wet Peroxide Oxidation. Degradation of Rhodamine G Dye.” Appl. Catal. B Environ., 104 201–210 (2011). https://doi.org/10.1016/j.apcatb.2011.02.004

    Article  Google Scholar 

  3. Ameen, S, Shaheer Akhtar, M, Seo, HK, Shin, HS, “Mineralization of Rhodamine 6G Dye Over Rose Flower-Like ZnO Nanomaterials.” Mater. Lett., 113 20–24 (2013). https://doi.org/10.1016/j.matlet.2013.09.004

    Article  Google Scholar 

  4. Ramírez-Aparicio, J, Samaniego-Benítez, JE, Ramírez-Bon, R, “TiO2-Chabazite Semiconductor Composites for Photocatalytic Degradation of Rhodamine Under Sunlight Irradiation.” Sol. Energy, 139 258–265 (2016). https://doi.org/10.1016/j.solener.2016.09.050

    Article  Google Scholar 

  5. Ramírez-Aparicio, J, Sánchez-Martínez, A, Ramírez-Bon, R, “Photodecolorization of Rhodamine Under Sunlight Irradiation Driven by Chabazite.” Sol. Energy, 129 45–53 (2016). https://doi.org/10.1016/j.solener.2016.01.050

    Article  Google Scholar 

  6. Zhou, K, Zhang, Q, Wang, B, Liu, J, Wen, P, Gui, Z, Hu, Y, “The Integrated Utilization of Typical Clays in Removal of Organic Dyes and Polymer Nanocomposites.” J. Clean. Prod., 81 281–289 (2014). https://doi.org/10.1016/j.jclepro.2014.06.038

    Article  Google Scholar 

  7. Shen, W, Zhang, C, Li, Q, Zhang, W, Cao, L, Ye, J, “Preparation of Titanium Dioxide Nanoparticle Modified Photocatalytic Self-Cleaning Concrete.” J. Clean. Prod., 87 762–765 (2015). https://doi.org/10.1016/j.jclepro.2014.10.014

    Article  Google Scholar 

  8. Robertson, PKJ, “Semiconductor Photocatalysis: An Environmentally Acceptable Alternative Production Technique and Effluent Treatment Process.” J. Clean. Prod., 4 203–212 (1996). https://doi.org/10.1016/S0959-6526(96)00044-3

    Article  Google Scholar 

  9. Lee, SL, Ho, LN, Ong, SA, Wong, YS, Voon, CH, Khalik, WF, Yusoff, NA, Nordin, N, “Enhanced Electricity Generation and Degradation of the Azo Dye Reactive Green 19 in a Photocatalytic Fuel Cell Using ZnO/Zn as the Photoanode.” J. Clean. Prod., 127 579–584 (2015). https://doi.org/10.1016/j.jclepro.2016.03.169

    Article  Google Scholar 

  10. Asiri, AM, Al-Amoudi, MS, Al-Talhi, TA, Al-Talhi, AD, “Photodegradation of Rhodamine 6G and Phenol Red by Nanosized TiO2 Under Solar Irradiation.” J. Saudi Chem. Soc., 15 121–128 (2011). https://doi.org/10.1016/j.jscs.2010.06.005

    Article  Google Scholar 

  11. Sun, Q, Hu, X, Zheng, S, Sun, Z, Liu, S, Li, H, “Influence of Calcination Temperature on the Structural, Adsorption and Photocatalytic Properties of TiO2 Nanoparticles Supported on Natural Zeolite.” Powder Technol., 274 88–97 (2015). https://doi.org/10.1016/j.powtec.2014.12.052

    Article  Google Scholar 

  12. Safardoust-Hojaghan, H, Salavati-Niasari, M, “Degradation of Methylene Blue as a Pollutant with N-Doped Graphene Quantum Dot/Titanium Dioxide Nanocomposite.” J. Clean. Prod., 148 31–36 (2017). https://doi.org/10.1016/j.jclepro.2017.01.169

    Article  Google Scholar 

  13. Kumar, A, Jena, HM, “Removal of Methylene Blue and Phenol onto Prepared Activated Carbon from Fox Nutshell by Chemical Activation in Batch and Fixed-Bed Column.” J. Clean. Prod., 137 1246–1259 (2016). https://doi.org/10.1016/j.jclepro.2016.07.177

    Article  Google Scholar 

  14. Wang, S, Gong, Q, Zhu, Y, Liang, J, “Preparation and Photocatalytic Properties of Silver Nanoparticles Loaded on CNTs/TiO2 Composite.” Appl. Surf. Sci., 255 8063–8066 (2009). https://doi.org/10.1016/j.apsusc.2009.05.014

    Article  Google Scholar 

  15. Bhosale, RR, Pujari, SR, Muley, GG, Patil, SH, Patil, KR, Shaikh, MF, Gambhir, AB, “Solar Photocatalytic Degradation of Methylene Blue Using Doped TiO2 Nanoparticles.” Sol. Energy, 103 473–479 (2014). https://doi.org/10.1016/j.solener.2014.02.043

    Article  Google Scholar 

  16. Pereira, JHOS, Vilar, VJP, Borges, MT, González, O, Esplugas, S, Boaventura, RAR, “Photocatalytic Degradation of Oxytetracycline Using TiO2 Under Natural and Simulated Solar Radiation.” Sol. Energy, 85 2732–2740 (2011). https://doi.org/10.1016/j.solener.2011.08.012

    Article  Google Scholar 

  17. Lima, CS, Batista, KA, García Rodríguez, A, Souza, JR, Fernandes, KF, “Photodecomposition and Color Removal of a Real Sample of Textile Wastewater Using Heterogeneous Photocatalysis with Polypyrrole.” Sol. Energy, 114 105–113 (2015). https://doi.org/10.1016/j.solener.2015.01.038

    Article  Google Scholar 

  18. Manjo, F, Jime, ME, Orellana, G, Garcı, D, “Solar Water Disinfection by Singlet Oxygen Photogenerated with Polymer-Supported Ru (II) Sensitizers.” Sol. Energy, 80 1382–1387 (2006). https://doi.org/10.1016/j.solener.2005.04.027

    Article  Google Scholar 

  19. Sil, D, Chakrabarti, S, “Photocatalytic Degradation of PVC–ZnO Composite Film Under Tropical Sunlight and Artificial UV Radiation: A Comparative Study.” Sol. Energy, 84 476–485 (2010). https://doi.org/10.1016/j.solener.2009.09.012

    Article  Google Scholar 

  20. Magalha, F, Lago, RM, “Floating Photocatalysts Based on TiO2 Grafted on Expanded Polystyrene Beads for the Solar Degradation of Dyes.” Sol. Energy, 83 1521–1526 (2009). https://doi.org/10.1016/j.solener.2009.04.005

    Article  Google Scholar 

  21. Zhu, Y, Dan, Y, “Photocatalytic Activity of Poly(3-Hexylthiophene)/Titanium Dioxide Composites for Degrading Methyl Orange.” Sol. Energy Mater. Sol. Cells, 94 1658–1664 (2010). https://doi.org/10.1016/j.solmat.2010.05.025

    Article  Google Scholar 

  22. Yu-Chieh, T, Herman, L, Chun-Yu, C, Jing-Jong, S, Wei-Fang, S, “Enhancing Performance of P3HT: TiO2 Solar Cells Using Doped and Surface Modified TiO2 Nanorods.” J. Colloid Interface Sci., 448 315–319 (2015). https://doi.org/10.1016/j.jcis.2015.02.015

    Article  Google Scholar 

  23. Hao, Y, Cao, Y, Sun, B, Li, Y, Zhang, Y, Xu, D, “A Novel Semiconductor-Sensitized Solar Cell Based on P3HT@CdS@TiO2 Core-Shell Nanotube Array.” Sol. Energy Mater. Sol. Cells, 101 107–113 (2012). https://doi.org/10.1016/j.solmat.2012.02.032

    Article  Google Scholar 

  24. Liao, G, Chen, S, Quan, XIE, Chen, H, Zhang, Y, “Photonic Crystal Coupled TiO2/Polymer Hybrid for Efficient Photocatalysis Under Visible Light Irradiation.” Environ. Sci. Technol., 44 3481–3485 (2010). https://doi.org/10.1021/es903833f

    Article  Google Scholar 

  25. Zan, L, Tian, L, Liu, Z, Peng, Z, “A New Polystyrene—TiO2 Nanocomposite Film and Its Photocatalytic Degradation.” Appl. Catal. A Gen., 264 237–242 (2004). https://doi.org/10.1016/j.apcata.2003.12.046

    Article  Google Scholar 

  26. Shingchung, L, Zhike, L, Jinhua, L, Laiwa, C, Feng, Y, “Hybrid Solar Cells Based on Poly(3-Hexylthiophene) and Electrospun TiO2 Nanofibers Modified with CdS Nanoparticles.” Prog. Nat. Sci. Mater. Int., 23 514–518 (2013). https://doi.org/10.1016/j.pnsc.2013.09.003

    Article  Google Scholar 

  27. Muktha, B, Madras, G, Row, TNG, Scherf, U, Patil, S, “Conjugated Polymers for Photocatalysis.” J. Phys. Chem. B, 111 7994–7998 (2007). https://doi.org/10.1021/jp071096n

    Article  Google Scholar 

  28. Singh, S, Mahalingam, H, Singh, PK, “Polymer-Supported Titanium Dioxide Photocatalysts for Environmental Remediation: A Review.” Appl. Catal. A Gen., 462–463 178–195 (2013). https://doi.org/10.1016/j.apcata.2013.04.039

    Article  Google Scholar 

  29. Muktha, B, Mahanta, D, Patil, S, Madras, G, “Synthesis and Photocatalytic Activity of Poly(3-hexylthiophene)/TiO2 Composites.” J. Solid State Chem., 180 2986–2989 (2007). https://doi.org/10.1016/j.jssc.2007.07.017

    Article  Google Scholar 

  30. Pali, LS, Ganesan, P, Garg, A, “Inverted P3HT: PCBM Organic Solar Cells on Low Carbon Steel Substrates.” Sol. Energy, 133 339–348 (2016). https://doi.org/10.1016/j.solener.2016.03.061

    Article  Google Scholar 

  31. Zhang, J, Yang, H, Xu, S, Yang, L, Song, Y, Jiang, L, Dan, Y, “Dramatic Enhancement of Visible Light Photocatalysis Due to Strong Interaction Between TiO2 and End-Group Functionalized P3HT.” Appl. Catal. B Environ., 174–175 193–202 (2015). https://doi.org/10.1016/j.apcatb.2015.02.034

    Google Scholar 

  32. Liu, J, Zhang, J, “Photocatalytic Activity Enhancement of TiO2 Nanocrystalline Thin Film with Surface Modification of Poly-3-Hexylthiophene by In Situ Polymerization.” J. Mater. Res., 31 1448–1455 (2016). https://doi.org/10.1557/jmr.2016.124

    Article  Google Scholar 

  33. Sapawe, N, Jalil, A, Triwahyono, S, Sah, RNR, Jusoh, NWC, Hairom, NHH, Efendi, J, “Electrochemical Strategy for Grown ZnO Nanoparticles Deposited onto HY Zeolite with Enhanced Photodecolorization of Methylene Blue: Effect of the Formation of Si–O–Zn Bonds.” Appl. Catal. A Gen., 456 144–158 (2013). https://doi.org/10.1016/j.apcata.2013.02.025

    Article  Google Scholar 

  34. Nezamzadeh-Ejhieh, A, Banan, Z, “A Comparison Between the Efficiency of CdS Nanoparticles/Zeolite A and CdO/Zeolite A as Catalysts in Photodecolorization of Crystal Violet.” Desalination, 279 146–151 (2011). https://doi.org/10.1016/j.desal.2011.06.006

    Article  Google Scholar 

  35. Matos, J, García, A, Park, S-E, “Ti-Containing Mesoporous Silica for Methylene Blue Photodegradation.” Appl. Catal. A Gen., 393 359–366 (2011). https://doi.org/10.1016/j.apcata.2010.12.020

    Article  Google Scholar 

  36. Alvaro, M, Carbonell, E, Fornés, V, García, H, “Enhanced Photocatalytic Activity of Zeolite-Encapsulated TiO2 Clusters by Complexation with Organic Additives and N-Doping.” ChemPhysChem, 7 200–205 (2006). https://doi.org/10.1002/cphc.200500264

    Article  Google Scholar 

  37. Bossmann, SH, Wörner, M, Pokhrel, MR, Baumeister, B, Göb, S, Braun, AM, “Ruthenium(II)-Tris-Bipyridine/Titanium Dioxide Codoped Zeolite Y Photocatalyst: Performance Optimization Using 2,4-Xylidine (1-Amino-2,4-Dimethylbenzene).” Sep. Purif. Technol., 67 201–207 (2009). https://doi.org/10.1016/j.seppur.2009.03.015

    Article  Google Scholar 

  38. Stefan, MC, Bhatt, MP, Sista, P, Magurudeniya, HD, “Grignard Metathesis (GRIM) Polymerization for the Synthesis of Conjugated Block Copolymers Containing Regioregular Poly(3-Hexylthiophene).” Polym. Chem., 3 1693 (2012). https://doi.org/10.1039/c1py00453k

    Article  Google Scholar 

  39. Flores-López, NS, Castro-Rosas, J, Ramírez-Bon, R, Mendoza-Córdova, A, Larios-Rodríguez, E, Flores-Acosta, M, “Synthesis and Properties of Crystalline Silver Nanoparticles Supported in Natural Zeolite Chabazite.” J. Mol. Struct., 1028 110–115 (2012). https://doi.org/10.1016/j.molstruc.2012.05.080

    Article  Google Scholar 

  40. Ruiz-Serrano, D, Flores-Acosta, M, Conde-Barajas, E, Ramírez-Rosales, D, Yáñez-Limón, JM, Ramírez-Bon, R, “Study by XPS of Different Conditioning Processes to Improve the Cation Exchange in Clinoptilolite.” J. Mol. Struct., 980 149–155 (2010). https://doi.org/10.1016/j.molstruc.2010.07.007

    Article  Google Scholar 

  41. Dong, W, Lee, CW, Lu, X, Sun, Y, Hua, W, Zhuang, G, Zhang, S, Chen, J, Hou, H, Zhao, D, “Synchronous Role of Coupled Adsorption and Photocatalytic Oxidation on Ordered Mesoporous Anatase TiO2–SiO2 Nanocomposites Generating Excellent Degradation Activity of RhB Dye.” Appl. Catal. B Environ., 95 197–207 (2010). https://doi.org/10.1016/j.apcatb.2009.12.025

    Article  Google Scholar 

  42. Wei, H, Scudiero, L, Eilers, H, “Infrared and Photoelectron Spectroscopy Study of Vapor Phase Deposited Poly(3-Hexylthiophene).” Appl. Surf. Sci., 255 8593–8597 (2009). https://doi.org/10.1016/j.apsusc.2009.06.031

    Article  Google Scholar 

  43. Shinozaki, R, Nakato, T, “Photochemical Behavior of Rhodamine 6G Dye Intercalated in Photocatalytically Active Layered Hexaniobate.” Microporous Mesoporous Mater., 113 81–89 (2008). https://doi.org/10.1016/j.micromeso.2007.11.005

    Article  Google Scholar 

  44. Murcia López, S, Hidalgo, MC, Navío, JA, Colón, G, “Novel Bi2WO6–TiO2 Heterostructures for Rhodamine B Degradation Under Sunlike Irradiation.” J. Hazard. Mater., 185 1425–1434 (2011). https://doi.org/10.1016/j.jhazmat.2010.10.065

    Article  Google Scholar 

  45. Natarajan, TS, Thomas, M, Natarajan, K, Bajaj, HC, Tayade, RJ, “Study on UV-LED/TiO2 Process for Degradation of Rhodamine B Dye.” Chem. Eng. J., 169 126–134 (2011). https://doi.org/10.1016/j.cej.2011.02.066

    Article  Google Scholar 

  46. Chen, F, Zhao, J, Hidaka, H, “Highly Selective Deethylation of Rhodamine B: Adsorption and Photooxidation Pathways of the Dye on the TiO2/SiO2 Composite Photocatalyst.” Int. J. Photoenergy, 5 209–217 (2003). https://doi.org/10.1155/S1110662X03000345

    Article  Google Scholar 

Download references

Acknowledgments

To CONACYT for scholarship support and the UT-Dallas, National Laboratory of Research and Technological Development of Advanced Films (LIDTRA) at Cinvestav-Querétaro for the support to accomplish this work. The Mexican Center for Innovation in Geothermal Energy (CeMIEGeo) Petography Unit for the facilities granted (SEM). Financial support from Welch Foundation (AT-1740), NSF-MRI Grant (CHE-1126177) and NSF (DMR-0956116) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ramírez-Aparicio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramírez-Aparicio, J., Pathiranage, T.M.S.K., Nguyen, H.Q. et al. Synthesis of P3HT base semiconducting hybrid films and their photocatalytic properties. J Coat Technol Res 16, 1065–1075 (2019). https://doi.org/10.1007/s11998-018-00181-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-018-00181-3

Keywords

Navigation