Skip to main content
Log in

Nanoparticulate inorganic UV absorbers: a review

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Inorganic nanoparticles with UV-absorbing properties are an important class of UV filters. They can be used in various applications and in a variety of forms, including suspensions, nanocomposites, and solid thin films. In this review, an overview of the synthetic methods and their respective products is given for the most popular UV-absorbing nanomaterials, including zinc oxide, titanium dioxide, cerium dioxide and ferrous oxides, and oxyhydroxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chaochanchaikul, K, Rosarpitak, V, Sombatsompop, N, “Photodegradation Profiles of PVC Compound and Wood/PVC Composites Under UV Weathering.” Express Polym. Lett., 7 146–160 (2012)

    Google Scholar 

  2. Krochmann, J, “Zur Frange der Beleuchtung von Museen. Teil 1—Forderungen an die Beleuchtung.” Lichttechnik, 30 66–70 (1978)

    Google Scholar 

  3. Krochmann, J, “Zur Frange der Beleuchtung von Museen. Teil 2—Tageslicht in Museen.” Lichttechnik, 30 104–105 (1978)

    Google Scholar 

  4. Aydinli, S, Hilbert, GS, Krochmann, J, “Über die Gefährdung von Ausstellungsgegenständen durch optische Strahlung.” Licht-Forschung, 5 35–47 (1983)

    Google Scholar 

  5. Piegari, A, Polato, P, “Multilayer Coatings on Glass for Painting Protection and Optimized Color Rendering.” Appl. Opt., 41 3319–3326 (2002)

    Google Scholar 

  6. Piegari, A, Polato, P, “Wideband Optical Coatings for Protecting Artwork from Ultraviolet and Infrared Radiation Damage.” J. Opt. A Pure Appl. Opt., 5 S152–S156 (2003)

    Google Scholar 

  7. Eggset, G, Volden, G, Krokan, H, “UV-Induced DNA Damage and Its Repair in Human Skin In Vivo Studied by Sensitive Immunohistochemical Methods.” Carcinogenesis, 4 745–750 (1983)

    Google Scholar 

  8. Kricker, A, Armstrong, BK, English, DR, “Sun Exposure and Nonmelanolytic Skin Cancer.” Cancer Causes and Control, 5 367–392 (1994)

    Google Scholar 

  9. Rodil, R, Moeder, M, Altenburger, R, Schmitt-Jansen, M, “Photostability and Phytotoxicity of Selected Sunscreen Agents and Their Degradation Mixtures in Water.” Anal. Bioanal. Chem., 395 1513–1524 (2009)

    Google Scholar 

  10. Gerlock, JL, Tang, W, Dearth, MA, Korniski, TJ, “Reaction of Benzotriazole Ultraviolet Light Absorbers with Free Radicals.” Polym. Degrad. Stab., 48 121–130 (1995)

    Google Scholar 

  11. Pickett, JE, “Permanence of UV Absorbers in Plastics and Coatings.” In: Martin, JW, Bauer, DR (eds.) Service Life Prediction: Methodology and Metrologies, pp. 250–265. ACS, Washington (2001)

  12. Singaravelu, S, Mayo, DC, Park, HK, Schriver, KE, Klopf, JM, Kelley, MJ, Haglund, RF, “Fabrication and Performance of Polymer–Nanocomposite Anti-reflective Thin Films Deposited by RIR-MAPLE.” Appl. Phys. A, 117 1415–1423 (2014)

    Google Scholar 

  13. Saadat-Monfared, A, Mohseni, M, “Polyurethane Nanocomposite Films Containing Nano-Cerium Oxide as UV Absorber; Part 2: Structural and Mechanical Studies Upon UV Exposure.” Colloids Surf., A, 441 752–757 (2014)

    Google Scholar 

  14. Bermudez, MD, Brostow, W, Carrion-Vilches, FJ, Sanes, J, “Scratch Resistance of Polycarbonate Containing ZnO Nanoparticles: Effects of Sliding Direction.” J. Nanosci. Nanotechnol., 10 6683–6689 (2010)

    Google Scholar 

  15. Shi, X, Nguyen, TA, Suo, Z, Liu, Y, Avci, R, “Effect of Nanoparticles on the Anticorrosion and Mechanical Properties of Epoxy Coating.” Surf. Coat. Technol., 204 237–245 (2009)

    Google Scholar 

  16. Becheri, A, Dürr, M, Lo Nostro, P, Baglioni, P, “Synthesis and Characterization of Zinc Oxide Nanoparticles: Application to Textiles as UV-Absorbers.” J. Nanopart. Res., 10 679–689 (2007)

    Google Scholar 

  17. Daoud, WA, Xin, JH, “Low Temperature Sol-Gel Processed Photocatalytic Titania Coating.” J. Sol-Gel. Sci. Technol., 29 25–29 (2004)

    Google Scholar 

  18. Xin, JH, Daoud, WA, Kong, YY, “A New Approach to UV-Blocking Treatment for Cotton Fabrics.” Text. Res. J., 74 97–100 (2004)

    Google Scholar 

  19. Sricharussin, W, Threepopnatkul, P, Neamjan, N, “Effect of Various Shapes of Zinc Oxide Nanoparticles on Cotton Fabric for UV-Blocking and Anti-bacterial Properties.” Fibers Polym., 12 1037–1041 (2011)

    Google Scholar 

  20. Qi, K, Daoud, WA, Xin, JH, Mak, CL, Tang, W, Cheung, WP, “Self-Cleaning Cotton.” J. Mater. Chem., 16 4567 (2006)

    Google Scholar 

  21. Zapata, PA, Palza, H, Delgado, K, Rabagliati, FM, “Novel Antimicrobial Polyethylene Composites Prepared by Metallocenic In Situ Polymerization with TiO2-Based Nanoparticles.” J. Polym. Sci., Part A: Polym. Chem., 50 4055–4062 (2012)

    Google Scholar 

  22. Zhang, X-T, Sato, O, Taguchi, M, Einaga, Y, Murakami, T, Fujishima, A, “Self-Cleaning Particle Coating with Antireflection Properties.” Chem. Mater., 17 696–700 (2005)

    Google Scholar 

  23. Currie, E, Van De Belt, R, Aqueous Metaloxide Dispersions and Coating Materials Prepared Thereof, Int. Patent No. WO2010/046030 A2, 2010

  24. Charpentier, PA, Burgess, KD, Self-Cleaning Coatings. The University of Western Ontario, London, 2010

    Google Scholar 

  25. Rathje, PM, Sharp, DR, Thermally Conductive Nanocomposite Coatings Compositions. Energyguard Atlantic LLC, DBA Ener.co, US Patent No. 2012/0178877 A1, 2012

  26. Castano, V, Nanotechnological Thermal Insulating Coatings and Uses Therof. Nano Labs Corp., Int. Patent No. WO2014070822 A1, 2014

  27. Matsui, M, Nanoparticle Coating Compositions, Manufacture of Dielectric Layers with Excellent Cracking and Heat Resistance from Them, and Manufacture of Plasma Display Panels and Surface-Conduction Electron Emitter Displays Using Them. Asahi Kasei Electronics Co., Japan, 2007

    Google Scholar 

  28. Grundwürmer, M, Schupp, N, Meyer, M, Wehr, J, Schutz von erosionsbelasteten Luftfahrtstrukturen durch nanopartikelverstärkte anorganisch-organische Hybridbeschichtungen. EADS Deutschland GmbH, Germany, 2008

    Google Scholar 

  29. Feng, L, Zhang, M, Zhang, P, TiO 2  + CeO 2 Nanoparticle-Reinforced Al Alloy Hot Dip Coatings for Titanium Alloy Parts with Improved Adhesion and Corrosion and Wear Resistance. Wuxi Linlong Aluminum Co., PRC, Chinese Patent No. CN 101736270 A, 2010

  30. Xia, T, Kovochich, M, Liong, M, Madler, L, Gilbert, B, Shi, H, Yeh, JI, Zink, JI, Nel, AE, “Comparison of the Mechanism of Toxicity of Zinc Oxide and Cerium Oxide Nanoparticles Based on Dissolution and Oxidative Stress Properties.” ACS Nano, 2 2121–2134 (2008)

    Google Scholar 

  31. Monteiro-Riviere, NA, Wiench, K, Landsiedel, R, Schulte, S, Inman, AO, Riviere, JE, “Safety Evaluation of Sunscreen Formulations Containing Titanium Dioxide and Zinc Oxide Nanoparticles in UVB Sunburned Skin: An In Vitro and In Vivo Study.” Toxicol. Sci., 123 264–280 (2011)

    Google Scholar 

  32. Kumar, A, Pandey, AK, Singh, SS, Shanker, R, Dhawan, A, “Engineered ZnO and TiO(2) Nanoparticles Induce Oxidative Stress and DNA Damage Leading to Reduced Viability of Escherichia coli.” Free Radic. Biol. Med., 51 1872–1881 (2011)

    Google Scholar 

  33. Newman, MD, Stotland, M, Ellis, JI, “The safety of Nanosized Particles in Titanium Dioxide- and Zinc Oxide-Based Sunscreens.” J. Am. Acad. Dermatol., 61 685–692 (2009)

    Google Scholar 

  34. Schilling, K, Bradford, B, Castelli, D, Dufour, E, Nash, JF, Pape, W, Schulte, S, Tooley, I, van den Bosch, J, Schellauf, F, “Human Safety Review of “Nano” Titanium Dioxide and Zinc Oxide.” Photochem. Photobiol. Sci., 9 495–509 (2010)

    Google Scholar 

  35. Brayner, R, Dahoumane, SA, Yepremian, C, Djediat, C, Meyer, M, Coute, A, Fievet, F, “ZnO Nanoparticles: Synthesis, Characterization, and Ecotoxicological Studies.” Langmuir, 26 6522–6528 (2010)

    Google Scholar 

  36. Guo, H, Barnard, AS, “Naturally Occurring Iron Oxide Nanoparticles: Morphology, Surface Chemistry and Environmental Stability.” J. Mater. Chem. A, 1 27 (2013)

    Google Scholar 

  37. Singh, SP, Rahman, MF, Murty, US, Mahboob, M, Grover, P, “Comparative Study of Genotoxicity and Tissue Distribution of Nano and Micron Sized Iron Oxide in Rats After Acute Oral Treatment.” Toxicol. Appl. Pharmacol., 266 56–66 (2013)

    Google Scholar 

  38. F.a.D. Administration, “Sunscreen Drug Products For Over-the-Counter Human Use Final Monograph.” Fed. Reg., 64 27666–27693 (1999)

    Google Scholar 

  39. SCCNFP, Opinion of the Scientific Committee on Cosmetic and Non-food Products Intended for Consumers Concerning Zinc Oxide, European Comission, Brussels, 2003

  40. “Regulation (EC) No 1223/2009 of the European Parliament and of the Council on Cosmetic Products.” Off. J. Eur. Union L, 342 59–209 (2009)

  41. S.C.o.C.S. SCCS, Opinion on Zinc oxide (nano form), Colipa No S 76, SCCS/1489/12 (2012)

  42. Liu, Y, He, L, Mustapha, A, Li, H, Hu, ZQ, Lin, M, “Antibacterial Activities of Zinc Oxide Nanoparticles Against Escherichia coli O157:H7.” J. Appl. Microbiol., 107 1193–1201 (2009)

    Google Scholar 

  43. Kadar, E, Simmance, F, Martin, O, Voulvoulis, N, Widdicombe, S, Mitov, S, Lead, JR, Readman, JW, “The Influence of Engineered Fe(2)O(3) Nanoparticles and Soluble (FeCl(3)) Iron on the Developmental Toxicity Caused by CO(2)-Induced Seawater Acidification.” Environ. Pollut., 158 3490–3497 (2010)

    Google Scholar 

  44. Zhu, MT, Feng, WY, Wang, B, Wang, TC, Gu, YQ, Wang, M, Wang, Y, Ouyang, H, Zhao, YL, Chai, ZF, “Comparative Study of Pulmonary Responses to Nano- and Submicron-Sized ferric Oxide in Rats.” Toxicology, 247 102–111 (2008)

    Google Scholar 

  45. Li, B, Ze, Y, Sun, Q, Zhang, T, Sang, X, Cui, Y, Wang, X, Gui, S, Tan, D, Zhu, M, Zhao, X, Sheng, L, Wang, L, Hong, F, Tang, M, “Molecular Mechanisms of Nanosized Titanium Dioxide-Induced Pulmonary Injury in Mice.” PLoS ONE, 8 e55563 (2013)

    Google Scholar 

  46. Oyabu, T, Morimoto, Y, Hirohashi, M, Horie, M, Kambara, T, Lee, BW, Hashiba, M, Mizuguchi, Y, Myojo, T, Kuroda, E, “Dose-Dependent Pulmonary Response of Well-Dispersed Titanium Dioxide Nanoparticles Following Intratracheal Instillation.” J. Nanopart. Res., 15 1–11 (2013)

    Google Scholar 

  47. Kasper, J, Hermanns, MI, Bantz, C, Koshkina, O, Lang, T, Maskos, M, Pohl, C, Unger, RE, Kirkpatrick, CJ, “Interactions of Silica Nanoparticles with Lung Epithelial Cells and the Association to Flotillins.” Arch. Toxicol., 87 1053–1065 (2013)

    Google Scholar 

  48. Morcoç, H, Özgür, Ü, Zinc Oxide: Fundamentals, Materials and Device Technology. Wiley VCH-Verlag GmbH & Co. KgaA, Weinheim, 2009

    Google Scholar 

  49. Ashrafi, A, Jagadish, C, “Review of Zincblende ZnO: Stability of Metastable ZnO Phases.” J. Appl. Phys., 102 071101 (2007)

    Google Scholar 

  50. Karzel, H, Potzel, W, Köfferlein, M, Schiessl, W, Steiner, M, Hiller, U, Kalvius, G, Mitchell, D, Das, T, Blaha, P, Schwarz, K, Pasternak, M, “Lattice Dynamics and Hyperfine Interactions in ZnO and ZnSe at High External Pressures.” Phys. Rev. B, 53 11425–11438 (1996)

    Google Scholar 

  51. Yang, HM, Zhang, XC, Tang, AD, Ao, WQ, “Formation of Zinc Oxide Nanoparticles by Mechanochemical Reaction.” Mater. Sci. Technol., 20 1493–1495 (2004)

    Google Scholar 

  52. Tsuzuki, T, McCormick, PG, “Synthesis of Metal-Oxide Nanoparticles by Mechanochemical Processing.” Mater. Sci. Forum, 343–346 383–388 (2000)

    Google Scholar 

  53. Deng, HM, Ding, J, Shi, Y, Liu, XY, Wang, J, “Ultrafine Zinc Oxide Powders Prepared by Precipitation/Mechanical Milling.” J. Mater. Sci., 36 3273–3276 (2001)

    Google Scholar 

  54. Lu, J, Ng, KM, Yang, S, “Efficient, One-Step Mechanochemical Process for the Synthesis of ZnO Nanoparticles.” Ind. Eng. Chem. Res., 47 1095–1101 (2008)

    Google Scholar 

  55. McCormick, PG, Tzuzuki, T, Process for the Production of Ultrafine Powders of Metal Oxides. Advanced Nano Technologies Pty Ltd., USA, 2003

    Google Scholar 

  56. Cross, SE, Innes, B, Roberts, MS, Tsuzuki, T, Robertson, TA, McCormick, P, “Human Skin Penetration of Sunscreen Nanoparticles: In Vitro Assessment of a Novel Micronized Zinc Oxide Formulation.” Skin Pharmacol. Physiol., 20 148–154 (2007)

    Google Scholar 

  57. Shen, L, Guo, L, Bao, N, Yanagisawa, K, “Salt-Assisted Solid-State Chemical Reaction. Synthesis of ZnO Nanocrystals.” Chem. Lett., 32 826–827 (2003)

    Google Scholar 

  58. Chang, HJ, Lu, CZ, Wang, YS, Son, CS, Kim, SI, Kim, YH, Choi, IH, “Optical Properties of ZnO Nanocrystals Synthesized by Using Sol-Gel Method.” J. Korean Phys. Soc., 45 959–962 (2004)

    Google Scholar 

  59. Meulenkamp, EA, “Synthesis and Growth of ZnO Nanoparticles.” J. Phys. Chem. B, 102 5566–5572 (1998)

    Google Scholar 

  60. Tokumoto, MS, Briois, V, Santilli, CV, Pulcinelli, SH, “Preparation of ZnO Nanoparticles: Structural Study of the Molecular Precursor.” J. Sol Gel Sci. Technol., 26 547–551 (2003)

    Google Scholar 

  61. Bahnemann, DW, Kormann, C, Hoffmann, MR, “Preparation and Characterization of Quantum Size Zinc Oxide: A Detailed Spectroscopic Study.” J. Phys. Chem., 91 3789–3798 (1987)

    Google Scholar 

  62. Spanhel, L, Anderson, MA, “Semiconductor Clusters in the Sol-Gel Process—Quantized Aggregation, Gelation, and Crystal-Growth in Concentrated ZnO Colloids.” J. Am. Chem. Soc. , 113 2826–2833 (1991)

    Google Scholar 

  63. Bai, S, Hu, J, Li, D, Luo, R, Chen, A, Liu, CC, “Quantum-Sized ZnO Nanoparticles: Synthesis, Characterization and Sensing Properties for NO2.” J. Mater. Chem., 21 12288 (2011)

    Google Scholar 

  64. Yadav, A, Prasad, V, Kathe, AA, Raj, S, Yadav, D, Sundaramoorthy, C, Vigneshwaran, N, “Functional Finishing in Cotton Fabrics Using Zinc Oxide Nanoparticles.” Bull. Mater. Sci., 29 641–645 (2006)

    Google Scholar 

  65. Ba-Abbad, MM, Kadhum, AAH, Bakar Mohamad, A, Takriff, MS, Sopian, K, “The Effect of Process Parameters on the Size of ZnO Nanoparticles Synthesized Via the Sol–Gel Technique.” J. Alloys Compd., 550 63–70 (2013)

    Google Scholar 

  66. Lorenzen, V, Kliss, R, Bergmann, S, Mohr, C, Dimesso, L, Hecht, E, Greiwe, P, Double-Layer Surface-Modified Nanoparticulate Zinc Oxide, Method for the Production Thereof, And Use Thereof, Sustech Gmbh & Co Kg, Int. Patent No. WO 2007/048570 A2, 2007

  67. Vega-Poot, AG, Rodriguez-Gattorno, G, Soberanis-Dominguez, OE, Patino-Diaz, RT, Espinosa-Pesqueira, M, Oskam, G, “The Nucleation Kinetics of ZnO Nanoparticles from ZnCl2 in Ethanol Solutions.” Nanoscale, 2 2710–2717 (2010)

    Google Scholar 

  68. Koch, U, Fojtik, A, Weller, H, Henglein, A, “Photochemistry of Semiconductor Colloids. Preparation of Extremely Small ZnO Particles, Fluorescence Phenomena and Size Quantization Effects.” Chem. Phys. Lett., 122 507–510 (1985)

    Google Scholar 

  69. Iwasaki, M, Inubushi, Y, Ito, S, “New route to Prepare Ultrafine ZnO Particles and Its Reaction Mechanism.” J. Mater. Sci. Lett., 16 1503–1505 (1997)

    Google Scholar 

  70. Seo, DU, Lu, CZ, Chang, HJ, Joo, SW, “Quenching of Growth of Zinc Oxide Nanoparticles by Adsorption of Organic Stabilizers.” Mater. Sci. Forum, 449–452 1133–1136 (2004)

    Google Scholar 

  71. Hwang, C-C, Wu, T-Y, “Synthesis and Characterization of Nanocrystalline ZnO Powders by a Novel Combustion Synthesis Method.” Mater. Sci. Eng., B, 111 197–206 (2004)

    Google Scholar 

  72. Ma, J, Liu, J, Bao, Y, Zhu, Z, Wang, X, Zhang, J, “Synthesis of Large-Scale Uniform Mulberry-Like ZnO Particles with Microwave Hydrothermal Method and Its Antibacterial Property.” Ceram. Int., 39 2803–2810 (2013)

    Google Scholar 

  73. Natrchalayuth, K, Wasanapiarnpong, T, Larpkiattaworn, S, Sujaridworakun, P, “Hydrothermal Synthesis of Zinc Oxide Nanoparticle from Zinc-Dust Waste for Photocatalytic and Antibacterial Applications.” Adv. Mater. Res., 506 78–81 (2012)

    Google Scholar 

  74. Wei, H, Li, M, Ye, Z, Yang, Z, Zhang, Y, “Novel Ga-Doped ZnO Nanocrystal Ink: Synthesis and Characterization.” Mater. Lett., 65 427–429 (2011)

    Google Scholar 

  75. Kshirsagar, SD, Inamdar, D, Gopalakrishnan, IK, Kulshreshtha, SK, Mahamuni, S, “Formation of Room-Temperature Ferromagnetic Zn1−x Co x O Nanocrystals.” Solid State Commun., 143 457–460 (2007)

    Google Scholar 

  76. Fu, J, Ren, X, Yan, S, Gong, Y, Tan, Y, Liang, K, Du, R, Xing, X, Mo, G, Chen, Z, Cai, Q, Sun, D, Wu, Z, “Synthesis and Structural Characterization of ZnO Doped with Co.” J. Alloys Compd., 558 212–221 (2013)

    Google Scholar 

  77. Li, C, Li, Y, Wu, Y, Ong, BS, Loutfy, RO, “Synthesis of Zinc Oxide Nanocrystals by Thermal Decomposition of Zn-Oleate in Organic Medium.” Sci. China Ser. E: Technol. Sci., 51 2075–2079 (2008)

    Google Scholar 

  78. Choi, SH, Kim, EG, Park, J, An, K, Lee, N, Kim, SC, Hyeon, T, “Large-Scale Synthesis of Hexagonal Pyramid-Shaped ZnO Nanocrystals from Thermolysis of Zn-Oleate Complex.” J. Phys. Chem. B, 109 14792–14794 (2005)

    Google Scholar 

  79. Demir, MM, Muñoz-Esp, R, Lieberwirth, I, Wegner, G, “Precipitation of Monodisperse ZnO Nanocrystals Via Acid-Catalyzed Esterification of Zinc Acetate.” J. Mater. Chem., 16 2940 (2006)

    Google Scholar 

  80. Li, C, Zhao, Y, Wang, L, Li, G, Shi, Z, Feng, S, “Polyol-Mediated Synthesis of Highly Water-Soluble ZnO Colloidal Nanocrystal Clusters.” Eur. J. Inorg. Chem., 2010 217–220 (2010)

    Google Scholar 

  81. Cozzoli, PD, Kornowski, A, Weller, H, “Colloidal Synthesis of Organic-Capped ZnO Nanocrystals Via a Sequential Reduction-Oxidation Reaction.” J. Phys. Chem. B, 109 2638–2644 (2005)

    Google Scholar 

  82. Cozzoli, PD, Curri, ML, Agostiano, A, Leo, G, Lomascolo, M, “ZnO Nanocrystals by a Non-hydrolytic Route: Synthesis and Characterization.” J. Phys. Chem. B, 107 4756–4762 (2003)

    Google Scholar 

  83. Ghotbi, MY, “Synthesis and Characterization of Nano-Sized ε-Zn(OH)2 and Its Decomposed Product, Nano-Zinc Oxide.” J. Alloys Compd., 491 420–422 (2010)

    Google Scholar 

  84. Ghotbi, MY, “Nickel Doped Zinc Oxide Nanoparticles Produced by Hydrothermal Decomposition of Nickel-Doped Zinc Hydroxide Nitrate.” Particuology, 10 492–496 (2012)

    Google Scholar 

  85. Ghotbi, MY, Bagheri, N, Sadrnezhaad, SK, “Nanocrystalline Copper Doped Zinc Oxide Produced from Copper Doped Zinc Hydroxide Nitrate as a Layered Precursor.” Adv. Powder Technol., 23 279–283 (2012)

    Google Scholar 

  86. Mädler, L, Stark, WJ, Pratsinis, SE, “Rapid Synthesis of Stable ZnO Quantum Dots.” J. Appl. Phys., 92 6537 (2002)

    Google Scholar 

  87. Mädler, L, Kammler, HK, Mueller, R, Pratsinis, SE, “Controlled Synthesis of Nanostructured Particles by Flame Spray Pyrolysis.” J. Aerosol Sci., 33 369–389 (2002)

    Google Scholar 

  88. Scherrer, P, “Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen.” Mathematisch-Physikalische Klasse, 98–100 (1918)

  89. Bagabas, AA, Mohamed, RM, Aboud, MFA, Mostafa, MMM, Alshammari, AS, AL-Othman, ZA, Synthesis of Zinc-Oxide Nanoparticles and Their Use for Photo Catalytic Degradation of Cyanide. King Abdulaziz City for Science and Technology(KACST), US Patent No. US20120097522 A1, 2012

  90. Lee, HS, Suh, YJ, Kil, DS, Cho, K, Fabrication Method of ZnO Nano-Particle and Fabrication Method of ZnO Nano-Fluid Using Thereof. Korea Institute of Geoscience and Mineral Resources, USA, 2013

    Google Scholar 

  91. Lu, J, Ng, KM, Yang, S, Feng, J, One-Step, Paste-State Mechanochemical Process for the Synthesis of zinc Oxide Nanoparticles. The Hong Kong University of Science and Technology, US Patent No. US20100034730 A1, 2010

    Google Scholar 

  92. Drovetskaya, T, De Mul, MNG, “Easily Formulated Zinc Oxide Powder.” In: W.I.P. Organization (ed.) BASF SE, Int. Patent No. WO2013173336 A1, 2013

  93. Barnard, AS, Xu, H, “An Environmentally Sensitive Phase Map of Titania Nanocrystals.” ACS Nano, 2 2237–2242 (2008)

    Google Scholar 

  94. Macwan, DP, Dave, PN, Chaturvedi, S, “A Review on Nano-TiO2 Sol–Gel Type Syntheses and Its Applications.” J. Mater. Sci., 46 3669–3686 (2011)

    Google Scholar 

  95. Ohno, T, Sarukawa, K, Tokieda, K, Matsumura, M, “Morphology of a TiO2 Photocatalyst (Degussa, P-25) Consisting of Anatase and Rutile Crystalline Phases.” J. Catal., 203 82–86 (2001)

    Google Scholar 

  96. Ohno, Y, Tomita, K, Komatsubara, Y, Taniguchi, T, Katsumata, K-I, Matsushita, N, Kogure, T, Okada, K, “Pseudo-Cube Shaped Brookite (TiO2) Nanocrystals Synthesized by an Oleate-Modified Hydrothermal Growth Method.” Cryst. Growth Des., 11 4831–4836 (2011)

    Google Scholar 

  97. Morselli, D, Messori, M, Bondioli, F, “Poly(Methyl Methacrylate)-TiO2 Nanocomposite Obtained by Non-hydrolytic Sol–Gel Synthesis.” J. Mater. Sci., 46 6609–6617 (2011)

    Google Scholar 

  98. Song, X, Zhao, Y, Wang, H, Du, Q, “Fabrication of Polymer Microspheres Using Titania as a Photocatalyst and Pickering Stabilizer.” Langmuir, 25 4443–4449 (2009)

    Google Scholar 

  99. Hegde, MS, Nagaveni, K, Roy, S, “Synthesis, Structure and Photocatalytic activity of Nano TiO2 and Nano Ti1−x M x O2−δ (M = Cu, Fe, Pt, Pd, V, W, Ce, Zr).” Pramana, 65 641–645 (2005)

    Google Scholar 

  100. Arin, M, Watté, J, Pollefeyt, G, Buysser, K, Driessche, I, Lommens, P, “Low Temperature Deposition of TiO2 Layers from Nanoparticle Containing Suspensions Synthesized by Microwave Hydrothermal Treatment.” J. Sol Gel Sci. Technol., 66 100–111 (2013)

    Google Scholar 

  101. Uekawa, N, Kajiwara, J, Kakegawa, K, Sasaki, Y, “Low Temperature Synthesis and Characterization of Porous Anatase TiO2 Nanoparticles.” J. Colloid Interface Sci., 250 285–290 (2002)

    Google Scholar 

  102. Oskam, G, Nellore, A, Penn, RL, Searson, PC, “The Growth Kinetics of TiO2 Nanoparticles from Titanium(IV) Alkoxide at High Water/Titanium Ratio.” J. Phys. Chem. B, 107 1734–1738 (2003)

    Google Scholar 

  103. Yang, J, Mei, S, Ferreira, JMF, “Hydrothermal Synthesis of Nanosized Titania Powders: Influence of Peptization and Peptizing Agents on the Crystalline Phases and Phase Transitions.” J. Am. Ceram. Soc., 83 1361–1368 (2000)

    Google Scholar 

  104. Yang, J, Mei, S, Ferreira, JMF, “Hydrothermal Synthesis of Nanosized Titania Powders: Influence of Tetraalkyl Ammonium Hydroxides on Particle Characteristics.” J. Am. Ceram. Soc., 84 1696–1702 (2004)

    Google Scholar 

  105. Ito, S, Inoue, S, Kawada, H, Hara, M, Iwasaki, M, Tada, H, “Low-Temperature Synthesis of Nanometer-Sized Crystalline TiO2 Particles and Their Photoinduced Decomposition of Formic Acid.” J. Colloid Interface Sci., 216 59–64 (1999)

    Google Scholar 

  106. Vorkapic, D, Matsoukas, T, “Reversible Agglomeration: A Kinetic Model for the Peptization of Titania Nanocolloids.” J. Colloid Interface Sci., 214 283–291 (1999)

    Google Scholar 

  107. Hemme, I, Mangold, H, Geissen, S-U, Moiseev, A, Doped Titanium Dioxide. Degussa AG, US Patent No. US6627173 B2, 2003

    Google Scholar 

  108. Berkei, M, Bettentrup, H, Synthesis of Titanium Dioxide Nanoparticles, Nanogate AG, US Patent No. US20090061230 A1, 2009

  109. Huber, DL, Monson, TC, High-Yield Synthesis of Brookite TiO 2 Nanoparticles, Sandia Corporation, US Patent No. US7943116 B1, 2011

  110. Kim, HJ, Lee, SC, Lee, JB, Method for Preparing Uniform Anatase-Type Titanium Dioxide Nanoparticles, Korea Basic Science Institute, US Patent No. US8357348 B2, 2013

  111. Cho, SH, Park, JK, Jie, HS, Choi, HI, Song, BG, Titanium Dioxide Nanoparticles for Fabricating Photo-Electrode for Efficient, Longlasting Dye-Sensitized Solar Cell and Fabrication Method Thereof, Korea Institute of Science and Technology, US Patent No. US20130247978 A1, 2013

  112. Ohno, T, Rutile Titanium Dioxide Nanoparticles Each Having Novel Exposed Crystal Face and Method for Producing Same, Daicel Corporation, US Patent No. US20120132515 A1, 2012

  113. Tsunekawa, S, Sivamohan, R, Ohsuna, T, Takahashi, H, Tohji, K, “Ultraviolet Absorption Spectra of CeO2 Nano-Particles.” Mater. Sci. Forum, 315–317 439–445 (1999)

    Google Scholar 

  114. Trovarelli, A, “Catalytic Properties of Ceria and CeO2-Containing Materials.” Catal. Rev., 38 439–520 (1996)

    Google Scholar 

  115. Mädler, L, Stark, WJ, Pratsinis, SE, “Flame-Made Ceria Nanoparticles.” J. Mater. Res., 17 1356–1362 (2011)

    Google Scholar 

  116. Gu, H, Soucek, MD, “Preparation and Characterization of Monodisperse Cerium Oxide Nanoparticles in Hydrocarbon Solvents.” Chem. Mater., 19 1103–1110 (2007)

    Google Scholar 

  117. Vallet-Regí, M, Conde, F, Nicolopoulos, S, Ragel, CV, González-Calbet, JM, “Synthesis and Characterization of CeO2 Obtained by Spray Pyrolysis Method.” Mater. Sci. Forum, 235–238 291–296 (1997)

    Google Scholar 

  118. Hwang, C-C, Huang, T-H, Tsai, J-S, Lin, C-S, Peng, C-H, “Combustion Synthesis of Nanocrystalline Ceria (CeO2) Powders by a Dry Route.” Mater. Sci. Eng., B, 132 229–238 (2006)

    Google Scholar 

  119. Purohit, RD, Sharma, BP, Pillai, KT, Tyagi, AK, “Ultrafine Ceria Powders Via Glycine-Nitrate Combustion.” Mater. Res. Bull., 36 2711–2721 (2001)

    Google Scholar 

  120. Chen, W, Li, F, Yu, J, Liu, L, “A Facile and Novel Route to High Surface Area Ceria-Based Nanopowders by Salt-Assisted Solution Combustion Synthesis.” Mater. Sci. Eng., B, 133 151–156 (2006)

    Google Scholar 

  121. Sekar, MMA, Sundar Manoharan, S, Patil, KC, “Combustion Synthesis of Fine-Particle Ceria.” J. Mater. Sci. Lett., 9 1205–1206 (1990)

    Google Scholar 

  122. Hos, JP, McCormick, PG, “Mechanochemical Synthesis and Characterisation of Nanoparticulate Samarium-Doped Cerium Oxide.” Scripta Mater., 48 85–90 (2003)

    Google Scholar 

  123. Li, J-G, Ikegami, T, Wang, Y, Mori, T, “Reactive Ceria Nanopowders Via Carbonate Precipitation.” J. Am. Ceram. Soc., 85 2376–2378 (2002)

    Google Scholar 

  124. Hassanzadeh-Tabrizi, SA, Mazaheri, M, Aminzare, M, Sadrnezhaad, SK, “Reverse Precipitation Synthesis and Characterization of CeO2 Nanopowder.” J. Alloys Compd., 491 499–502 (2010)

    Google Scholar 

  125. Li, R, Yabe, S, Yamashita, M, Momose, S, Yoshida, S, Yin, S, Sato, T, “Synthesis and UV-Shielding Properties of ZnO- and CaO-Doped CeO2 Via Soft Solution Chemical Process.” Solid State Ionics, 151 235–241 (2002)

    Google Scholar 

  126. Hakuta, Y, Onai, S, Terayama, H, Adschiri, T, Arai, K, “Production of Ultra-Fine Ceria Particles by Hydrothermal Synthesis Under Supercritical Conditions.” J. Mater. Sci. Lett., 17 1211–1213 (1998)

    Google Scholar 

  127. Zhou, YC, Rahaman, MN, “Hydrothermal Synthesis and Sintering of Ultrafine CeO2 Powders.” J. Mater. Res., 8 1680–1686 (2011)

    Google Scholar 

  128. Suresh, R, Ponnuswamy, V, Mariappan, R, “Effect of Annealing Temperature on the Microstructural, Optical and Electrical Properties of CeO2 Nanoparticles by Chemical Precipitation Method.” Appl. Surf. Sci., 273 457–464 (2013)

    Google Scholar 

  129. Zha, S, Fu, Q, Lang, Y, Xia, C, Meng, G, “Novel Azeotropic Distillation Process for Synthesizing Nanoscale Powders of Yttria Doped Ceria Electrolyte.” Mater. Lett., 47 351–355 (2001)

    Google Scholar 

  130. Hu, J-D, Li, Y-X, Zhou, X-Z, Cai, M-X, “Preparation and Characterization of Ceria Nanoparticles Using Crystalline Hydrate Cerium Propionate as Precursor.” Mater. Lett., 61 4989–4992 (2007)

    Google Scholar 

  131. Arul, NS, Mangalaraj, D, Chen, PC, Ponpandian, N, Viswanathan, C, “Strong Quantum Confinement Effect in Nanocrystalline Cerium Oxide.” Mater. Lett., 65 2635–2638 (2011)

    Google Scholar 

  132. Mohamed, RM, Aazam, ES, “Synthesis and Characterization of CeO2-SiO2 Nanoparticles by Microwave-Assisted Irradiation Method for Photocatalytic Oxidation of Methylene Blue Dye.” Int. J. Photoenergy, 2012 1–9 (2012)

    Google Scholar 

  133. Liao, X-H, Zhu, J-J, Xu, J-Z, Chen, H-Y, Zhu, J-M, “Preparation of Monodispersed Nanocrystalline CeO2 Powders by Microwave Irradiation,” Chem. Commun.10 937–938 (2001)

  134. Chen, H-I, Chang, H-Y, “Synthesis of Nanocrystalline Cerium Oxide Particles by the Precipitation Method.” Ceram. Int., 31 795–802 (2005)

    Google Scholar 

  135. Yamashita, M, Kameyama, K, Yabe, S, Yoshida, S, Fujishiro, Y, Kawai, T, Sato, T, “Synthesis and Microstructure of Calcia Doped Ceria as UV Filters.” J. Mater. Sci., 37 683–687 (2002)

    Google Scholar 

  136. Dikmen, S, Shuk, P, Greenblatt, M, “Hydrothermal Synthesis and Properties of Ce1−x Bi x O2−δ Solid Solutions.” Solid State Ionics, 112 299–307 (1998)

    Google Scholar 

  137. Dikmen, S, Shuk, P, Greenblatt, M, “Hydrothermal Synthesis and Properties of Ce1−x La x O2−δ Solid Solutions.” Solid State Ionics, 126 89–95 (1999)

    Google Scholar 

  138. Dikmen, S, Shuk, P, Greenblatt, M, Gocmez, H, “Hydrothermal Synthesis and Properties of Ce1−x Gd x O2−δ Solid Solutions.” Solid State Sci., 4 585–590 (2002)

    Google Scholar 

  139. Huang, W, Shuk, P, Greenblatt, M, “Hydrothermal Synthesis and Properties of Ce1−x Sm x O2−x/2 and Ce1−x Ca x O2−x Solid Solutions.” Chem. Mater., 9 2240–2245 (1997)

    Google Scholar 

  140. Huang, W, Shuk, P, Greenblatt, M, “Properties of Sol-Gel Prepared Ce1−x Sm x O2−x/2 Solid Electrolytes.” Solid State Ionics, 100 23–27 (1997)

    Google Scholar 

  141. Huang, W, Shuk, P, Greenblatt, M, “Hydrothermal Synthesis and Properties of Terbium- or Praseodymium-Doped Ce1−x Sm x O2−x/2 Solid Solutions.” Solid State Ionics, 113–115 305–310 (1998)

    Google Scholar 

  142. Shuk, P, Greenblatt, M, Blanar, T, “Hydrothermally Prepared Oxide-Ion and Mixed Conductors Based on CeO2.” Ionics, 6 373–382 (2000)

    Google Scholar 

  143. Hirano, M, Fukuda, Y, Iwata, H, Hotta, Y, Inagaki, M, “Preparation and Spherical Agglomeration of Crystalline Cerium(IV) Oxide Nanoparticles by Thermal Hydrolysis.” J. Am. Ceram. Soc., 83 1287–1289 (2004)

    Google Scholar 

  144. Yin, L, Wang, Y, Pang, G, Koltypin, Y, Gedanken, A, “Sonochemical Synthesis of Cerium Oxide Nanoparticles-Effect of Additives and Quantum Size Effect.” J. Colloid Interface Sci., 246 78–84 (2002)

    Google Scholar 

  145. Yu, JC, Zhang, L, Lin, J, “Direct Sonochemical Preparation of High-Surface-Area Nanoporous Ceria and Ceria–Zirconia Solid Solutions.” J. Colloid Interface Sci., 260 240–243 (2003)

    Google Scholar 

  146. Masui, T, Fujiwara, K, Machida, K-I, Adachi, G-Y, Sakata, T, Mori, H, “Characterization of Cerium(IV) Oxide Ultrafine Particles Prepared Using Reversed Micelles.” Chem. Mater., 9 2197–2204 (1997)

    Google Scholar 

  147. Feng, FM, Xie, JQ, Zou, LK, Xie, B, “Characterization of Well-Dispersed CeO2 Nanoparticles Prepared by a New Method of Reverse Microemulsion.” Adv. Mater. Res., 194–196 781–784 (2011)

    Google Scholar 

  148. Yao, S-Y, Xie, Z-H, “Deagglomeration Treatment in the Synthesis of Doped-Ceria Nanoparticles Via Coprecipitation Route.” J. Mater. Process. Technol., 186 54–59 (2007)

    Google Scholar 

  149. Goharshadi, EK, Samiee, S, Nancarrow, P, “Fabrication of Cerium Oxide Nanoparticles: Characterization and Optical Properties.” J. Colloid Interface Sci., 356 473–480 (2011)

    Google Scholar 

  150. Zhou, Y, Phillips, RJ, Switzer, JA, “Electrochemical Synthesis and Sintering of Nanocrystalline Cerium(IV) Oxide Powders.” J. Am. Ceram. Soc., 78 981–985 (1995)

    Google Scholar 

  151. Reed, K, Cerium Dioxide Nanoparticle-Containing Fuel Additive. Cerion Technology Inc., USA, 2010

    Google Scholar 

  152. Chan, SW, Apparatus and Method for Preparing Cerium Oxide Nanoparticles, University of Columbia, Int. Patent No. WO2002090260 A1, 2002

  153. Prok, GR, Williams, SC, Method for Production of Stable Cerium Oxide Organic Colloids, Cerion Enterprises Llc, Int. Patent No. WO2013116300 A2, 2013

  154. Kambe, N, Bi, X, Cerium Oxide Nanoparticles. Nanogram Corporation, USA, 2011

    Google Scholar 

  155. Rzigalinski, BA, Seal, S, Bailey, D, Patil, S, Cerium Oxide Nanoparticles and Use in Enhancing Cell Survivability, University Of Central Florida Research Foundation, Inc., US Patent No. US7534453 B1, 2009

  156. Noh, JS, Cho, SB, Han, DG, Hong, HJ, Kwon, TH, Method for Preparing Single Crystalline Cerium Oxide Powders, US Patent No. US20040241070 A1, 2004

  157. Hanawa, K, Mochizuki, N, Ueda, N, Cerium Oxide Ultrafine Particles and Method for Preparing the Same, Mitsui Mining And Smelting Co., Ltd., US Patent No. US5938837 A, 1999

  158. Sherman, DM, Waite, TD, “Electronic Spectra of Fe3+ Oxides and Oxide Hydroxides in the Near IR to Near UV.” Am. Mineral., 70 1262–1269 (1985)

    Google Scholar 

  159. Suresh, R, Vijayaraj, A, Giribabu, K, Manigandan, R, Prabu, R, Stephen, A, Thirumal, E, Narayanan, V, “Fabrication of Iron Oxide Nanoparticles: Magnetic and Electrochemical Sensing Property.” J. Mater. Sci. Mater. Electron., 24 1256–1263 (2012)

    Google Scholar 

  160. Miao, H, Li, J, Lin, Y, Liu, X, Zhang, Q, Fu, J, “Characterization of γ-Fe2O3 Nanoparticles Prepared by Transformation of α-FeOOH.” Chin. Sci. Bull., 56 2383–2388 (2011)

    Google Scholar 

  161. Cavelius, C, Moh, K, Mathur, S, “Chemically Designed Growth of Monodisperse Iron Oxide Nanocrystals.” Cryst. Growth Des., 12 5948–5955 (2012)

    Google Scholar 

  162. Bumajdad, A, Ali, S, Mathew, A, “Characterization of Iron Hydroxide/Oxide Nanoparticles Prepared in Microemulsions Stabilized with Cationic/Non-ionic Surfactant Mixtures.” J. Colloid Interface Sci., 355 282–292 (2011)

    Google Scholar 

  163. Cabañas, MV, Vallet-Regí, M, Labeau, M, González-Calbet, JM, “Spherical Iron Oxide Particles Synthesized by an Aerosol Technique.” J. Mater. Res., 8 2694–2701 (2011)

    Google Scholar 

  164. Grimm, S, Schultz, M, Barth, S, Muller, R, “Flame Pyrolysis—A Preparation Route for Ultrafine Pure γ-Fe2O3 Powders and the Control of Their Particle Size and Properties.” J. Mater. Sci., 32 1083–1092 (1997)

    Google Scholar 

  165. Janzen, C, Roth, P, “Formation and Characteristics of Fe2O3 Nano-Particles in Doped Low Pressure H2/O2/Ar Flames.” Combust. Flame, 125 1150–1161 (2001)

    Google Scholar 

  166. Yi, JH, Son, S, Choi, M, “Superparamagnetic Iron (III) Oxide Nanoparticles Synthesized by Combustion Flame Process.” Key Eng. Mater., 206–213 135–138 (2002)

    Google Scholar 

  167. Suresh, R, Patil, KC, “A Combustion Process for the Instant Synthesis of γ-Iron Oxide.” J. Mater. Sci. Lett., 12 572–574 (1993)

    Google Scholar 

  168. Yamanobe, Y, Yamaguchi, K, Matsumoto, K, Fujii, T, “Magnetic Properties of Sodium-Modified Iron-Oxide Powders Synthesized by Sol-Gel Method.” Jpn. J. Appl. Phys., 30 478–483 (1991)

    Google Scholar 

  169. Mäkie, P, Westin, G, Persson, P, Österlund, L, “Adsorption of Trimethyl Phosphate on Maghemite, Hematite, and Goethite Nanoparticles.” J. Phys. Chem. A, 115 8948–8959 (2011)

    Google Scholar 

  170. Ahmmad, B, Leonard, K, Shariful Islam, M, Kurawaki, J, Muruganandham, M, Ohkubo, T, Kuroda, Y, “Green Synthesis of Mesoporous Hematite (α-Fe2O3) Nanoparticles and Their Photocatalytic Activity.” Adv. Powder Technol., 24 160–167 (2013)

    Google Scholar 

  171. Hua, J, Gengsheng, J, “Hydrothermal Synthesis and Characterization of Monodisperse α-Fe2O3 Nanoparticles.” Mater. Lett., 63 2725–2727 (2009)

    Google Scholar 

  172. Vollath, D, Szabó, DV, Taylor, RD, Willis, JO, Sickafus, KE, “Synthesis and Properties of Nanocrystalline Superparamagnetic γ-Fe2O3.” Nanostruct. Mater., 6 941–944 (1995)

    Google Scholar 

  173. Lu, J, Ng, KM, Yang, S, Solid-State Synthesis of Iron Oxide Nanoparticles. The Hong Kong University of Science and Technology, USA, 2011

    Google Scholar 

  174. Guo, L, Arafune, H, Teramae, N, “Synthesis of Mesoporous Metal Oxide by the Thermal Decomposition of Oxalate Precursor.” Langmuir, 29 4404–4412 (2013)

    Google Scholar 

  175. Hermanek, M, Zboril, R, Mashlan, M, Machala, L, Schneeweiss, O, “Thermal Behaviour of Iron(ii) Oxalate Dihydrate in the Atmosphere of Its Conversion Gases.” J. Mater. Chem., 16 1273 (2006)

    Google Scholar 

  176. Roychowdhury, A, Pati, SP, Mishra, AK, Kumar, S, Das, D, “Magnetically Addressable Fluorescent Fe3O4/ZnO Nanocomposites: Structural, Optical and Magnetization Studies.” J. Phys. Chem. Solids, 74 811–818 (2013)

    Google Scholar 

  177. Singh, LH, Govindaraj, R, Mythili, R, Amarendra, G, Sundar, CS, “Atomic Scale Study of Thermal Reduction of Nano Goethite Coexisting with Magnetite.” AIP Adv., 3 022101 (2013)

    Google Scholar 

  178. Burdinski, D, Bohlender, C, Haex, NPM, Synthesis of High-Performance Iron Oxide Particle Tracers for Magnetic Particle Imaging (mpi). Koninklijke Philips Electronics N.V., USA, 2013

    Google Scholar 

  179. Ennas, G, Musinu, A, Piccaluga, G, Zedda, D, Gatteschi, D, Sangregorio, C, Stanger, JL, Concas, G, Spano, G, “Characterization of Iron Oxide Nanoparticles in an Fe2O3−SiO2 Composite Prepared by a Sol−Gel Method.” Chem. Mater., 10 495–502 (1998)

    Google Scholar 

  180. Yu, JS, Method for Preparation of Hematite Iron Oxide with Different Nanostructures and Hematite Iron Oxide Prepared Thereby, Korea University Research And Business Foundation, US Patent No. US20130251624 A1, 2013

  181. Russo, U, Nodari, L, Vianello, F, Magro, M, Valle, G, Maghemite Nanoparticles and Method for Preparing Thereof. Universita’ Degli Studi Di Padova, USA, 2013

    Google Scholar 

  182. Peng, T-Y, Lv, H-J, Zeng, P, Zhang, X-H, “Preparation of ZnO Nanoparticles and Photocatalytic H2 Production Activity from Different Sacrificial Reagent Solutions.” Chin. J. Chem. Phys., 24 464–470 (2011)

    Google Scholar 

  183. Asl, SK, Sadrnezhaad, SK, Rad, MK, Üner, D, “Comparative Photodecolorization of Red Dye by Anatase, Rutile (TiO2), and Wurtzite (ZnO) Using Response Surface Methodology.” Turk. J. Chem., 36 121–135 (2012)

    Google Scholar 

  184. Lei, L, Wang, N, Zhang, XM, Tai, Q, Tsai, DP, Chan, HL, “Optofluidic Planar Reactors for Photocatalytic Water Treatment Using Solar Energy.” Biomicrofluidics, 4 43004 (2010)

    Google Scholar 

  185. Kristensen, SB, Kunov-Kruse, AJ, Riisager, A, Rasmussen, SB, Fehrmann, R, “High Performance Vanadia–Anatase Nanoparticle Catalysts for the Selective Catalytic Reduction of NO by Ammonia.” J. Catal., 284 60–67 (2011)

    Google Scholar 

  186. Xu, W, Yu, Y, Zhang, C, He, H, “Selective Catalytic Reduction of NO by NH3 over a Ce/TiO2 Catalyst.” Catal. Commun., 9 1453–1457 (2008)

    Google Scholar 

  187. Zan, L, Tian, L, Liu, Z, Peng, Z, “A New Polystyrene–TiO2 Nanocomposite Film and Its Photocatalytic Degradation.” Appl. Catal. A, 264 237–242 (2004)

    Google Scholar 

  188. Fa, W, Zan, L, Gong, C, Zhong, J, Deng, K, “Solid-Phase Photocatalytic Degradation of Polystyrene with TiO2 Modified by Iron(II) Phthalocyanine.” Appl. Catal. B, 79 216–223 (2008)

    Google Scholar 

  189. Mittal, M, Sharma, M, Pandey, OP, “Photocatalytic Studies of Crystal Violet Dye Using Mn Doped and PVP Capped ZnO Nanoparticles.” J. Nanosci. Nanotechnol., 14 2725–2733 (2014)

    Google Scholar 

  190. Dodd, A, McKinley, A, Saunders, M, Tsuzuki, T, "Synthesis and Photocatalytic Activity of Doped Zinx Oxide Nanoparticles." 2006 International Conference on Nanoscience and Nanotechnology, Vols. 1 and 2, pp. 324–327 (2006)

  191. Tsuzuki, T, He, R, Wang, J, Sun, L, Wang, X, Hocking, R, “Reduction of the Photocatalytic Activity of ZnO Nanoparticles for UV Protection Applications.” Int. J. Nanotechnol., 9 1017 (2012)

    Google Scholar 

  192. Wang, S, Wang, T, Chen, W, Hori, T, “Phase-Selectivity Photocatalysis: A New Approach in Organic Pollutants’ Photodecomposition by Nanovoid Core(TiO2)/Shell(SiO2) Nanoparticles.” Chem. Commun. (Camb.), 32 3756–3758 (2008)

    Google Scholar 

  193. Ide, Y, Koike, Y, Ogawa, M, “Molecular Selective Photocatalysis by TiO2/Nanoporous Silica Core/Shell Particulates.” J. Colloid Interface Sci., 358 245–251 (2011)

    Google Scholar 

  194. Nakamura, KJ, Ide, Y, Ogawa, M, “Molecular Recognitive Photocatalytic Decomposition on Mesoporous Silica Coated TiO2 Particle.” Mater. Lett., 65 24–26 (2011)

    Google Scholar 

  195. Wang, J, Tsuzuki, T, Sun, L, Wang, X, “Reducing the Photocatalytic Activity of Zinc Oxide Quantum Dots by Surface Modification.” J. Am. Ceram. Soc., 92 2083–2088 (2009)

    Google Scholar 

  196. Wang, H, Nakamura, H, Yao, K, Uehara, M, Nishimura, S, Maeda, H, Abe, E, “Effect of Polyelectrolyte Dispersants on the Preparation of Silica-Coated Zinc Oxide Particles in Aqueous Media.” J. Am. Ceram. Soc., 85 1937–1940 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Fajzulin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fajzulin, I., Zhu, X. & Möller, M. Nanoparticulate inorganic UV absorbers: a review. J Coat Technol Res 12, 617–632 (2015). https://doi.org/10.1007/s11998-015-9683-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-015-9683-2

Keywords

Navigation