Skip to main content
Log in

Improvement of anticorrosive performance of phosphate-based alkyd paints with suitable additives

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

The purpose of this investigation was focused on reducing the content of zinc phosphate in anticorrosive paints by means of the incorporation of low quantities of selected soluble corrosion inhibitors. The article describes the anticorrosive behavior of alkyd paints containing reduced levels of zinc phosphate, zinc oxide, and some soluble compounds used as additives (e.g., sodium polyphosphate, sodium phosphate, and sodium benzoate). Anticorrosive solventborne alkyd paints were formulated with a zinc phosphate content of 10% by volume (v/v) with respect to the total pigment concentration. In all cases, the PVC/CPVC (pigment volume concentration/critical pigment volume concentration) ratio was 0.8. Experimental paints, applied on sandblasted SAE 1010 panels, were evaluated by accelerated tests (salt spray cabinet) and electrochemical measurements (electrochemical impedance spectroscopy, EIS). The results show that the additions of small amounts of soluble corrosion inhibitors to low content zinc phosphate paint formulations enhance their performance in a very remarkable way. Perhaps, the most outstanding feature is that the employment of soluble additives allowed the reduction of the zinc phosphate content with concomitant savings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Romagnoli, R, Vetere, VF, “Heterogeneous Reaction Between Steel and Zinc Phosphate.” Corrosion (NACE), 51 116–123 (1995)

    Article  Google Scholar 

  2. Szklarska-Smialowska, Z, Mankowsky, J, “Cathodic Inhibition of the Corrosion of Mild Steel in Phosphate, Tungstate, Arsenate and Silicate Solutions Containing Ca2+ Ions.” Br. Corr. J., 4 271–275 (1969)

    CAS  Google Scholar 

  3. Meyer, G, “Moderne weiβe Inibitorpigmente und deren Kombinationen in Anstrichsystemen.” Farbe + Lack, 71 (2) 113–118 (1965)

    Google Scholar 

  4. Barraclouugh, J, Harrison, JB, “New Leadless Anti-Corrosive Primers.” J. Oil Col. Chem. Assoc., 48 (4) 341–355 (1965)

    Google Scholar 

  5. Fragata, F de L, Dopico, JE, “Anticorrosive Behavior of Zinc Phosphate in Alkyd and Epoxy Binders.” J. Oil Col. Chem. Assoc., 74 (3) 92–97 (1991)

    CAS  Google Scholar 

  6. Romagnoli, R, Vetere, VF, “Non Pollutant Corrosion Inhibitive Pigments: Zinc Phosphate, a Review.” Corros. Rev., 13 (81) 45–64 (1995)

    CAS  Google Scholar 

  7. Svoboda, M, Mleziva, J, “Properties of Coatings Determined by Anticorrosive Pigments.” Prog. Org. Coat., 12 251–297 (1984)

    Article  CAS  Google Scholar 

  8. Chromy, L, Kaminska, E, “Non-Toxic Anticorrosive Pigments.” Prog. Org. Coat., 18 319–324 (1990)

    Article  CAS  Google Scholar 

  9. Gerhard, A, Bittner, A, “Second Generation Phosphate Anti-Corrosive Pigments. Formulating Rules for Full Replacement of New Anti-Corrosive Pigments.” J. Coat. Technol., 58 59–65 (1986)

    Google Scholar 

  10. Bittner, A, “Advanced Phosphate Anticorrosive Pigments for Compliant Primers.” J. Coat. Technol., 61 114–118 (1989)

    Google Scholar 

  11. Romagnoli, R, del Amo, B, Vetere, VF, Vèleva, L, “High Performance Anticorrosive Epoxy Paints Pigmented with Zinc Molybdenum Phosphate.” Surf. Coat. Int., 83 27–31 (2000)

    Article  CAS  Google Scholar 

  12. del Amo, B, Romagnoli, R, Vetere, VF, “Study of the Anticorrosive Properties of Zinc Phosphate and Zinc Molybdophosphate in Alkyd Paints.” Corros. Rev., 14 121–133 (1996)

    Google Scholar 

  13. Vetere, VF, Romagnoli, R, “Role of Calcium Acid Phosphate as Corrosion Inhibitive Pigment.” Br. Corr. J., 29 115–119 (1994)

    CAS  Google Scholar 

  14. del Amo, B, Romagnoli, R, Vetere, VF, “Steel Corrosion Protection by Means of Alkyd Paints Pigmented with Calcium Acid Phosphate.” Ind. Eng. Chem. Res., 38 2310–2314 (1999)

    Article  CAS  Google Scholar 

  15. Taketani, Y, Kondo, H, Kropman, M, “Propertary Aluminum Triphosphate Pigments for Waterborne Coatings.” Polym. Paint Col. J., 183 270–271 (1993)

    CAS  Google Scholar 

  16. Jackson, KG, Kropman, M, “Novel Waterborne High Performance Steel Primer.” Polym. Paint Col. J., 178 559–561 (1988)

    Google Scholar 

  17. Takahashi, M, “Characteristics and Applications of Aluminium Triphosphate as Special Chemical.” Polym. Paint Col. J., 174 281–284 (1984)

    Google Scholar 

  18. Kamiya, K, Okuda, M, Okajima, M, “Combination Effect of K-White and Chromate Pigments in Coil Coatings Systems.” Polym. Paint Col. J., 178 974–980 (1988)

    CAS  Google Scholar 

  19. Nakano, J, Murakami, M, Okuda, M, “Aluminium Triphosphate-Salt Spray Studies.” Polym. Paint Col. J., 177 642–645 (1987)

    CAS  Google Scholar 

  20. Nishihara, M, Nakano, G, Kobayashi, M, Nagita, M, Murakami, M, “Studies on Anticorrosive Properties of Aluminium Triphosphate Pigments. Corrosion Inhibitive Properties in Alkyd Resin Coatings System.” Polym. Paint Col. J., 174 590–597 (1984)

    CAS  Google Scholar 

  21. Noguchi, T, Nahono, J, Kabayashi, M, Nagita, M, Kinugasa, M, Murakami, M, “Studies on Anticorrosive Properties of Aluminium Triphosphate Pigments. Corrosion Inhibitors Properties in Epoxy Resin Coatings System.” Polym. Paint Col. J., 174 888–891 (1984)

    CAS  Google Scholar 

  22. Deyá, M, Vetere, V, Romagnoli, R, del Amo, B, “Aluminium Tripolyphosphate Pigments for Anticorrosive Paints.” Pigment Resin Technol., 30 13–24 (2001)

    Article  Google Scholar 

  23. Vetere, V, Deyá, M, Romagnoli, R, del Amo, B, “Calcium Tripolyphosphate: An Anticorrosive Pigment for Paints.” J. Coat. Technol., 73 57–63 (2001)

    Article  CAS  Google Scholar 

  24. Deyá, M, Blustein, G, Romagnoli, R, del Amo, B, “The Influence of the Anion Type on the Anticorrosive Behaviour of Inorganic Phosphates.” Surf. Coat. Technol., 150 133–142 (2002)

    Article  Google Scholar 

  25. Deyá, M, Vetere, VF, Romagnoli, R, Del Amo, B, “Zinc Tripolyphosphate: An Anticorrosive Pigment for Paints.” Surf. Coat. Int., 86 B 79–85 (2003)

    Google Scholar 

  26. Pryor, MJ, Cohen, M, “The Inhibition of the Corrosion of Iron by Some Anodic Inhibitors.” J. Electrochem. Soc., 100 203–215 (1953)

    Article  CAS  Google Scholar 

  27. Blustein, G, del Amo, B, Romagnoli, R, “The Influence of the Solubility of Zinc Phosphate Pigments on their Anticorrosive Behaviour.” Pigment Resin Technol., 29 100–107 (2000)

    Article  CAS  Google Scholar 

  28. Deyá, MC, Blustein, G, Romagnoli, R, del Amo, B, “Zinc Phypophosphite: A Suitable Additive for Anticorrosive Paints to Promote Pigments Synergism.” J. Coat. Technol. Res., 6 (3) 369–376 (2009)

    Article  Google Scholar 

  29. Hodges, SA, Uphues, WM, Tran, MT, “Non-Toxic Corrosion Inhibitive Synergistic System.” Surf. Coat. Int., 80 178–183 (1997)

    Article  CAS  Google Scholar 

  30. Kalendová, A, Veselý, D, Stejskal, J, “Organic Coatings Containing Polyaniline and Inorganic Pigments as Corrosion Inhibitors.” Prog. Org. Coat., 62 105–116 (2008)

    Article  Google Scholar 

  31. Deyá, C, Romagnoli, R, del Amo, B, “A New Pigment for Smart Anticorrosive Coatings.” J. Coat. Technol. Res., 4 167–175 (2007)

    Article  Google Scholar 

  32. Aramaki, K, Hagiwara, M, Nishihara, H, “The Synergistic Effect of Anions and the Ammonium Cation on the Inhibition of Iron Corrosion in Acid Solution.” Corr. Sci., 27 (5) 487–497 (1987)

    Article  CAS  Google Scholar 

  33. Robu, C, Orban, N, Varga, G, “Anticorrosive Lead Free Pigments Combination.” Polym. Paint Col. J., 177 566–569 (1987)

    CAS  Google Scholar 

  34. Rozados, E, Vetere, V, Carbonari, R, “Estúdio sobre inhibidores inorgânicos: efecto de mezclas de cromato-fosfto.” Corr. Prot., 9 (3–4) 3–10 (1978)

    Google Scholar 

  35. Meyer, E, “Uber Zinkphosphat und Bariumchromat als moderne Korrosionsinhibitoren.” Farbe + Lack, 7 528–532 (1963)

    Google Scholar 

  36. Johnson, W, “Cost Effective Pigmentation in Alkyd Primers for Steel: Barrier Anticorrosion Mechanism.” J. Coat. Technol., 66 (831) 47–54 (1994)

    CAS  Google Scholar 

  37. Jabeera, B, Shibli, S, Anirudhan, T, “The Synergistic Effect of Molybdte with Zinc for the Effective Inhibition of Corrosion of Mild Steel.” Corr. Prev. Control, pp. 65–70, June 2001

  38. Kumari, A, Sreevalsan, K, Shibli, S, “Sodium Molibdatye for the Effective Protection of Steel: A Comprehensive Review.” Corr. Prev. Control, pp. 83–96, September 2001

  39. Simpson, CH, “US Navy Develops Non-toxic, Self Priming Coatings for Aluminium and Steel.” Paint Coat. Ind., June 1993

  40. Jackson, MA, “Guidelines to Formulation to Water-borne Epoxy Primers: An Evaluation of Anti-Corrosive Pigments.” J. Prot. Coat. Linings, 7 (4) 54–64 (1990)

    Google Scholar 

  41. Technical Data Sheet, Halox® Flash-X330 Halox Flash Rust Inhibitors

  42. Morcillo, M, Rodríguez, FJ, Bastidas, JM, “The Influence of Chlorides, Sulphates and Nitrates at the Coating-Steel Interface on Underfilm Corrosion.” Prog. Org. Coat., 31 245–253 (1997)

    Article  CAS  Google Scholar 

  43. Morcillo, M, “Soluble Salts: Their Effect on Premature Degradation of Anticorrosive Paints.” Prog. Org. Coat., 36 137–147 (1999)

    Article  CAS  Google Scholar 

  44. de la Fuente, D, Bohm, M, Houyoux, C, Rohwerder, M, Morcillo, M, “The Settling of Critical Levels of Soluble Salts for Painting.” Prog. Org. Coat., 58 23–32 (2007)

    Article  Google Scholar 

  45. Eurof Davies, D, Slaiman, QJM, “Mechanism of the Corrosion Inhibition of Fe by Sodium Benzoate-I. The Influence of Concentration and pH in Air-Saturated Solutions of Sodium Benzoate.” Corr. Sci., 11 671–682 (1971)

    Article  Google Scholar 

  46. Slaiman, QJM, Eurof Davies, D, “Mechanism of the Corrosion Inhibition of Fe by Sodium Benzoate-II. The Inhibitive Properties of Sodium Benzoate in De-aerated and Air-Saturated Solution.” Corr. Sci., 11 683–692 (1971)

    Article  CAS  Google Scholar 

  47. Blustein, G, Zinola, CF, “Inhibition of Steel Corrosion by Calcium Benzoate Adsorption in Nitrate Solutions; Theoretical and Experimental Approach.” J. Colloid Interface Sci., 278 393–403 (2004)

    Article  CAS  Google Scholar 

  48. Eurof Davies, D, Slaiman, QJM, “Mechanism of the Corrosion Inhibition of Fe by Sodium Benzoate-III. The Role of Oxygen.” Corr.Sci., 13 891–905 (1973)

    Article  Google Scholar 

  49. Muralidharan, VS, Sethuraman, R, Krishnamoorthy, S, “Benzoic Acid as Corrosion Inhibitors for Pure Iron in Sulphuric Acid.” Bull. Electrochem., 4 705–710 (1988)

    CAS  Google Scholar 

  50. Argawal, P, Landolt, D, “Effect of Anions on the Efficiency of Aromatic Carboxylic Acid Corrosion Inhibitors in Near Neutral Media: Experimental Investigation and Theoretical Modeling.” Corr. Sci., 4 (5) 673–691 (1998)

    Google Scholar 

  51. Kahraman, R, “Inhibition of Atmospheric Corrosion of Mild Steel by Sodium Benzoate Treatment.” J. Mater. Eng. Perform., 11 46–50 (2002)

    Article  CAS  Google Scholar 

  52. Takahashi, K, Bardwell, JA, Mac Dougall, B, Graham, MJ, “Mechanism of Anodic Dissolution and Passivation of Iron-II. Comparison of the Behavior in Neutral Benzoate and Acetate Buffer Solutions.” Electrochimi. Acta, 37 489–494 (1992)

    Article  CAS  Google Scholar 

  53. Blustein, G, Rodríguez, J, Zinola, CF, Romagnoli, R, “Inhibition of Steel Corrosion by Calcium Benzoate Adsorption in Nitrate Solution.” Corr. Sci., 47 369–383 (2005)

    Article  CAS  Google Scholar 

  54. Blustein, G, “Metallic Benzoates as Anticorrosive Pigments, Synthesis and Characterization.” In: Development of Metallic Benzoates Based Inhibitors for Steel Anticorrosive Protection, Chapter 3. Thesis defended at the National University of La Plata, La Plata, Argentina, 2005

  55. Blustein, G, Romagnoli, R, Jaén, JA, Di Sarli, AR, del Amo, B, “Zinc Basic Benzoate as Eco-Friendly Steel Corrosion Inhibitor Pigment for Anticorrosive Epoxy-Coatings.” Colloids Surf. A Physicochem. Eng. Asp., 290 7–18 (2006)

    Article  CAS  Google Scholar 

  56. Blustein, G, Di Sarli, AR, Jaén, JA, Romagnoli, R, del Amo, B, “Study of Iron Benzoate as a Novel Steel Corrosion Inhibitor Pigment for Protective Paint Films.” Corr. Sci., 49 4202–4231 (2007)

    Article  CAS  Google Scholar 

  57. Blustein, G, Romagnoli, R, Jaén, JA, Di Sarli, AR, del Amo, B, “Aluminum Basic Benzoate-Based Coatings: Evaluation of Anticorrosion Properties by Electrochemical Impedance Spectroscopy and Accelerated Tests.” Corrosion (NACE), 63 (10) 899–915 (2007)

    Article  CAS  Google Scholar 

  58. ASTM B 117. American Society for Testing and Materials, 1992 Annual Book of ASTM Standards, Section 6, Standard Method of Salt Spray (Fog) Testing, Paint-Tests for Formulated Products and Applied Coatings, vol. 06.01, 1992, p. 1. Easton, MD, 1990

  59. ASTM D 610-95. American Society for Testing and Materials, 1996 Annual Book of Standards, Section 6, Paint-Products and Applications; Protective Coatings; Pipeline Coatings: Standard Test Method for Evaluating Degree of Rusting on Painted Steel Surfaces, vol. 06.02, 1996, p. 13. Easton, MD, 1995

  60. ASTM D 714-87. American Society for Testing and Materials, 1996 Annual Book of Standards, Section 6, Paint-Tests for Chemical, Physical and Optical Properties; Appearance: Standard Test Method for Evaluating Degree of Blistering of Paints, vol. 06.01, 1996, p. 62. Easton, MD, 1987

  61. Boukamp BA, Report CT88/265/128, CT89/214/128, University of Twente. The Netherlands, 1989

  62. del Amo, B, Romagnoli, R, Vetere, VF, Hernández, LS, “Study of the Anticorrosive Properties of Zinc Phosphate in Vinyl Paints.” Prog. Org. Coat., 33 28–35 (1998)

    Article  CAS  Google Scholar 

  63. Amirudin, A, Thierry, D, “Application of Electrochemical Impedance Spectroscopy to Study Efficiency of Anticorrosive Pigments in Epoxy-Polyamide Resin.” Br. Corr. J., 30 128–134 (1995)

    CAS  Google Scholar 

  64. Mansfeld, F, “Recording and Analysis of AC Impedance Data for Corrosion Studies. Background and Methods of Analysis.” Corrosion (NACE), 36 (5) 301–307 (1981)

    Google Scholar 

  65. Kendig, M, Scully, J, “Basic Aspects of Electrochemical Impedance. Application for the Life Prediction of Organic Coatings on Metals.” Corrosion, 46 (1) 22–29 (1990)

    CAS  Google Scholar 

  66. Szauer, T, “Impedance Measurements for the Evaluation of Protective Nonmetallic Coatings.” Prog. Org. Coat., 10 171–183 (1982)

    Article  CAS  Google Scholar 

  67. Miszczyk, A, Szalinska, H, “Laboratory Evaluation of Epoxy Coatings with an Adhesion Promoter by Impedance.” Prog. Org. Coat., 25 357–363 (1995)

    Article  CAS  Google Scholar 

  68. Ferraz, O, Cavalcanti, E, Di Sarli, AR, “The Characterization of Protective Properties for Some Naval Steel/Polymeric Coatings/3%NaCl Solution Systems by EIS and Visual Assessment.” Corros. Sci., 37 (8) 1267–1280 (1995)

    Article  CAS  Google Scholar 

  69. Seré, PR, Santágata, DM, Elsner, CI, Di Sarli, AR, “The Influence of the Method of Application of Paint on the Corrosion of the Substrate as Assessed by ASTM and Electrochemical Methods.” Surf. Coat. Int., 3 128–134 (1998)

    Article  Google Scholar 

  70. Santágata, DM, Seré, PR, Elsner, CI, Di Sarli, AR, “Evaluation of the Surface Treatment Effect on the Corrosion Performance of Paint Coated Carbon Steel.” Prog. Org. Coat., 33 44–54 (1998)

    Article  Google Scholar 

  71. Armas, AR, Seré, PR, Elsner, CI, Di Sarli, AR, “The Surface Condition Effect on Adhesion and Corrosion Resistance of Carbon Steel/Chlorinated Rubber/Artificial Sea Water Systems.” Corr. Sci, 38 (6) 853–866 (1996)

    Article  Google Scholar 

  72. Brasher, D, Nurse, TJ, “Electrical Measurements of Immersed Paint Coatings on Metal. II. Effect of Osmotic Pressure and Ionic Concentration of Solution on Paint Breakdown.” J. Appl. Chem., 9 96–106 (1959)

    Article  CAS  Google Scholar 

  73. Leidheiser, HJR, Kendig, MW, “Mechanism of Corrosion of Polybutadiene-Coated Steel in Aerated Sodium Chloride.” Corrosion, 32 69–76 (1976)

    CAS  Google Scholar 

  74. Kendig, MW, Leidheiser, H, “Electrical Properties of Protective Polymer Coatings as Related to Corrosion of the Substrate.” J. Electrochem. Soc, 123 (7) 982–989 (1980)

    Article  Google Scholar 

  75. Mansfeld, F, Kendig, M, “Electrochemical Impedance Tests for Protective Coatings.” In: Haynes, C, Baboian, R (eds.) ASTM Publication STP 866, pp. 122–142. ASTM, Philadelphia, PA, 1985

  76. Beaunier, L, Epelboin, I, Lestrade, JC, Takenouti, H, “Etude electrochimique, et par microscopie electronique a balayage, du fer recouvert de peinture.” Surf. Technol., 3 237–254 (1976)

    Article  Google Scholar 

  77. Gabrielli, G, Keddam, M, Mattos, OR, Takenouti, H, “Charge Transfer Resistance Measurements by Galvanostatic Double Pulse and Impedance Methods.” J. Electroanal. Chem., 117 147–153 (1981)

    Article  Google Scholar 

  78. Szauer, T, Brandt, A, “Impedance Measurement on Zinc-Rich Paints.” J. Oil Col. Chem. Assoc., 67 13–15 (1984)

    CAS  Google Scholar 

  79. Frydrych, DJ, Farrington, GC, Townsend, HE, In: de Kendig, MW, Leidheiser, H, Jr (eds.) Corrosion Protection by Organic Coatings, Vol. 87(2), p. 240. The Electrochem. Soc., Pennington, NJ, 1987

  80. van Westing, EPM, Ferrari, GM, Geenen, FM, van de Wit, JHW, “In situ Determination of the Loss of Adhesion of Barrier Epoxy Coatings using Electrochemical Impedance Spectroscopy.” Prog. Org. Coat., 23 89–103 (1993)

    Article  Google Scholar 

  81. Standish, JV, Leidheiser, H, Jr, “The Effect of Water on the Dielectric Properties of a Corrosion-Protective Epoxy Polyamide Coating.” Org. Coat. Plast. Chem., 43 565–569 (1980)

    CAS  Google Scholar 

  82. Elsner, CI, Di Sarli, AR, “Comparison Between Electrochemical Impedance and Salt Spray Test in Evaluating the Effect of Epolxy Paints.” Braz. Chem. Soc., 51 15–18 (1994)

    Google Scholar 

  83. Leidheiser, H, “Electrical and Electrochemical Measurements as Predictors of Corrosion at the Metal-Organic Coating Interface.” Prog. Org. Coat., 7 79–104 (1979)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank to CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), CICPBA (Comisión de Investigaciones Científicas de la Provincia de Buenos Aires), and UNLP (Universidad Nacional de La Plata) for their sponsorship to do this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Blustein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blustein, G., Deyá, M.C., Romagnoli, R. et al. Improvement of anticorrosive performance of phosphate-based alkyd paints with suitable additives. J Coat Technol Res 8, 171–181 (2011). https://doi.org/10.1007/s11998-010-9289-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-010-9289-7

Keywords

Navigation