Skip to main content
Log in

Revealing the Potential of Theaflavin to Reduce Egg Allergenicity at the Molecular Level: A Study of the Binding Affinity of Theaflavin to Egg White Lysozyme

  • RESEARCH
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Tea polyphenols are considered one of the effective means to reduce protein sensitization, and it is necessary to study their binding mechanism. Therefore, this study investigated the major polyphenol theaflavin (TF) in black tea to investigate its interaction mechanism with egg white lysozyme (LYZ) using multispectral techniques and computer simulations. Molecular global docking and local docking showed that the binding sites of TF and LYZ overlapped highly with the sensitizing linear epitopes. Fluorescence spectroscopy experiments showed that TF formed a ground state complex with LYZ mainly through electrostatic forces to quench its endogenous fluorescence and lead to a decrease in surface hydrophobicity, and the binding reaction proceeded spontaneously; circular dichroism spectra indicated that the addition of TF affected the secondary structure of LYZ. In addition, enzymatic activity assays and in vitro antioxidant assays showed that this interaction slightly reduced the activity of LYZ on the one hand and the antioxidant activity of TF on the other. These results reveal the potential of TF to reduce the allergenicity of egg at the molecular level and provide a theoretical basis for applying tea polyphenols.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy restrictions.

References

  • Alam, M. N., Bristi, N. J., & Rafiquzzaman, M. (2013). Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharmaceutical Journal, 21(2), 143–152.

    Article  PubMed  Google Scholar 

  • Apam, J. Y., Herrera-Gonzalez, A., Uscanga, A. D., Guerrero-Analco, J. A., Monribot-Villanueva, J. L., Fragoso-Medina, J. A., & Luna-Vital, D. A. (2023). Effect of the enzymatic treatment of phenolic-rich pigments from purple corn (Zea mays L.): evaluation of thermal stability and alpha-glucosidase inhibition. Food and Bioprocess Technology, 16(9), 2055–2069.

    Article  Google Scholar 

  • Asemi-Esfahani, Z., Shareghi, B., Farhadian, S., & Momeni, L. (2021). Effect of Naphthol yellow S as a food dye on the lysozyme structure and its mechanisms of action. Journal of Molecular Liquids, 332, 115846.

    Article  CAS  Google Scholar 

  • Basu, A., & Suresh Kumar, G. (2017). Binding and inhibitory effect of the dyes amaranth and tartrazine on amyloid fibrillation in lysozyme. The Journal of Physical Chemistry B, 121(6), 1222–1239.

    Article  CAS  PubMed  Google Scholar 

  • Brand, J., & Kulozik, U. (2016). Comparison of different mechanical methods for the modification of the egg white protein ovomucin, Part B: Molecular Aspects. Food and Bioprocess Technology, 9(7), 1210–1218.

    Article  CAS  Google Scholar 

  • Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25–30.

    Article  CAS  Google Scholar 

  • Chakrabarty, S., Nag, D., Ganguli, A., Das, A., Dastidar, D. G., & Chakrabarti, G. (2019). Theaflavin and epigallocatechin-3-gallate synergistically induce apoptosis through inhibition of PI3K/Akt signaling upon depolymerizing microtubules in HeLa cells. Journal of Cellular Biochemistry, 120(4), 5987–6003.

    Article  CAS  PubMed  Google Scholar 

  • Chandrapala, J., Zisu, B., Palmer, M., Kentish, S., & Ashokkumar, M. (2011). Effects of ultrasound on the thermal and structural characteristics of proteins in reconstituted whey protein concentrate. Ultrasonics Sonochemistry, 18(5), 951–957.

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury, P., Sahuc, M. E., Rouille, Y., Riviere, C., Bonneau, N., Vandeputte, A., Brodin, P., Goswami, M., Bandyopadhyay, T., Dubuisson, J., & Seron, K. (2018). Theaflavins, polyphenols of black tea, inhibit entry of hepatitis C virus in cell culture. PLOS ONE, 13(11).

  • Crouse, H. F., Potoma, J., Nejrabi, F., Snyder, D. L., Chohan, B. S., & Basu, S. (2012). Quenching of tryptophan fluorescence in various proteins by a series of small nickel complexes. Dalton Transactions, 41(9), 2720–2731.

    Article  CAS  PubMed  Google Scholar 

  • Deng, Y., Govers, C., Bastiaan-Net, S., van der Hulst, N., Hettinga, K., & Wichers, H. J. (2019). Hydrophobicity and aggregation, but not glycation, are key determinants for uptake of thermally processed β-lactoglobulin by THP-1 macrophages. Food Research International, 120, 102–113.

    Article  CAS  PubMed  Google Scholar 

  • Dezhampanah, H., & Shabanzade, Z. (2022). Investigation of binding interaction between human serum albumin with zirconium complex of curcumin and curcumin. Journal of Biomolecular Structure & Dynamics, 40(2), 722–732.

    Article  CAS  Google Scholar 

  • Duan, R., Wu, D., Tang, L., Hu, X., Cheng, L., Yang, H. Q., Li, H. M., & Geng, F. (2020). Interactions of the cis and trans states of an azobenzene photoswitch with lysozyme induced by red and blue light. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy, 229.

  • Farhadian, S., Hashemi-Shahraki, F., Amirifar, S., Asadpour, S., Shareghi, B., Heidari, E., Shakerian, B., Rafatifard, M., & Firooz, A. R. (2022). Malachite Green, the hazardous materials that can bind to Apo-transferrin and change the iron transfer. International Journal of Biological Macromolecules, 194, 790–799.

    Article  CAS  PubMed  Google Scholar 

  • Gharbi, N., & Labbafi, M. (2018). Effect of processing on aggregation mechanism of egg white proteins. Food Chemistry, 252, 126–133.

    Article  CAS  PubMed  Google Scholar 

  • Ghosh, N., Mondal, R., & Mukherjee, S. (2015). Inverse temperature dependence in static quenching versus calorimetric exploration: Binding interaction of chloramphenicol to beta-lactoglobulin. Langmuir, 31(29), 8074–8080.

    Article  CAS  PubMed  Google Scholar 

  • Guan, L., Zhao, J. L., Sun, W., Deng, W. T., & Wang, L. Y. (2020). Meso-substituted thiazole orange for selective fluorescence detection to G-quadruplex DNA and molecular docking simulation. ACS Omega, 5(40), 26056–26062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, X., Wu, D., Tang, L., Zhang, J., Zeng, Z., Geng, F., & Li, H. (2022). Binding mechanism and antioxidant activity of piperine to hemoglobin. Food Chemistry, 394.

  • Huang, Y., Du, H., Kamal, G. M., Cao, Q., Liu, C., Xiong, S., Manyande, A., & Huang, Q. (2020). Studies on the binding interactions of grass carp (Ctenopharyngodon idella) myosin with chlorogenic acid and rosmarinic acid. Food and Bioprocess Technology, 13(8), 1421–1434.

    Article  CAS  Google Scholar 

  • Jimenez-Saiz, R., Benede, S., Miralles, B., Lopez-Exposito, I., Molina, E., & Lopez-Fandino, R. (2014). Immunological behavior of in vitro digested egg-white lysozyme. Molecular Nutrition & Food Research, 58(3), 614–624.

    Article  CAS  Google Scholar 

  • Jing, H., Yap, M., Wong, P. Y. Y., & Kitts, D. D. (2011). Comparison of physicochemical and antioxidant properties of egg-white proteins and fructose and inulin maillard reaction products. Food and Bioprocess Technology, 4(8), 1489–1496.

    Article  CAS  Google Scholar 

  • Kabir, M. Z., Tee, W.-V., Mohamad, S. B., Alias, Z., & Tayyab, S. (2017). Comprehensive insight into the binding of sunitinib, a multi-targeted anticancer drug to human serum albumin. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 181, 254–263.

    Article  CAS  PubMed  Google Scholar 

  • Khan, M. S., Khan, R. A., Rehman, M. T., Ismael, M. A., Husain, F. M., AlAjmi, M. F., Alokail, M. S., Altwaijry, N., & Alsalme, A. M. (2021). Elucidation of molecular interactions of theaflavin monogallate with camel milk lactoferrin: Detailed spectroscopic and dynamic simulation studies. RSC Advances, 11(43), 26710–26720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumari, M., Dohare, N., Maurya, N., Dohare, R., & Patel, R. (2017). Effect of 1-methyl-3-octyleimmidazolium chloride on the stability and activity of lysozyme: A spectroscopic and molecular dynamics studies. Journal of Biomolecular Structure & Dynamics, 35(9), 2016–2030.

    Article  CAS  Google Scholar 

  • Ladeira Silva, C. E., Hudson, E. A., Patino Agudelo, A. J., Mendes da Silva, L. H., Pinto, M. S., Hespanhol, M. D. C., Ribeiro Barros, F. A., & dos Santos Pires, A. C. (2018). Beta-carotene and milk protein complexation: a thermodynamic approach and a photo stabilization study. Food and Bioprocess Technology, 11(3), 610–620.

    Article  Google Scholar 

  • Lakowicz, J. R. (2006). Principles of fluorescence spectroscopy.

  • Li, M., Zhou, D., Wu, D., Hu, X., Hu, J., Geng, F., & Cheng, L. (2023). Comparative analysis of the interaction between alpha-lactalbumin and two edible azo colorants equipped with different sulfonyl group numbers. Food Chemistry, 416, 135826.

    Article  CAS  PubMed  Google Scholar 

  • Li, N., Wang, Y., Dang, L., Zhang, B., & Wang, Z. (2022). The activity and molecular interaction of lysozyme in adding four ionic liquids aqueous solutions. Journal of Molecular Liquids, 353, 118788.

    Article  CAS  Google Scholar 

  • Li, Q., Wang, X., Chen, J., Liu, C., Li, T., McClements, D. J., Dai, T., & Liu, J. (2016). Antioxidant activity of proanthocyanidins-rich fractions from Choerospondias axillaris peels using a combination of chemical-based methods and cellular-based assay. Food Chemistry, 208, 309–317.

    Article  CAS  PubMed  Google Scholar 

  • Liu, C. Q., & Sathe, S. K. (2018). Food allergen epitope mapping. Journal of Agricultural and Food Chemistry, 66(28), 7238–7248.

    Article  CAS  PubMed  Google Scholar 

  • Liu, H., Wang, D. F., Ren, Y. F., Wang, L., Weng, T. X., Liu, J., Wu, Y. S., Ding, Z., & Liu, M. (2022). Multispectroscopic and synergistic antioxidant study on the combined binding of caffeic acid and (-)-epicatechin gallate to lysozyme. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy, 272.

  • Lyndem, S., Gazi, R., Belwal, V. K., Bhatta, A., Jana, M., & Roy, A. S. (2022). Binding of bioactive esculin and esculetin with hen egg white lysozyme: Spectroscopic and computational methods to comprehensively elucidate the binding affinities, interacting forces, and conformational alterations at molecular level. Journal of Molecular Liquids, 360.

  • Ma, X., Zhang, L., Wang, W., Zou, M., Ding, T., Ye, X., & Liu, D. (2016). Synergistic effect and mechanisms of combining ultrasound and pectinase on pectin hydrolysis. Food and Bioprocess Technology, 9(7), 1249–1257.

    Article  CAS  Google Scholar 

  • Mohammadi, M., Shareghi, B., Farhadian, S., & Saboury, A. A. (2021). The effect of sorbitol on the structure and activity of carboxypeptidase A: Insights from a spectroscopic and computational approach. Journal of Molecular Liquids, 330, 115710.

    Article  CAS  Google Scholar 

  • Moyano, D. F., Goldsmith, M., Solfiell, D. J., Landesman-Milo, D., Miranda, O. R., Peer, D., & Rotello, V. M. (2012). Nanoparticle hydrophobicity dictates immune response. Journal of the American Chemical Society, 134(9), 3965–3967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narai-Kanayama, A., Saruwatari, K., Mori, N., & Nakayama, T. (2018). Theaflavin-3-gallate specifically interacts with phosphatidylcholine, forming a precipitate resistant against the detergent action of bile salt. Bioscience, Biotechnology, and Biochemistry, 82(3), 466–475.

    Article  CAS  PubMed  Google Scholar 

  • Pablos-Tanarro, A., Lozano-Ojalvo, D., Molina, E., & López-Fandiño, R. (2018). Assessment of the allergenic potential of the main egg white proteins in BALB/c mice. Journal of Agricultural and Food Chemistry, 66(11), 2970–2976.

    Article  CAS  PubMed  Google Scholar 

  • Pan, T. G., Wu, Y. N., He, S., Wu, Z., & Jin, R. (2022). Food allergenic protein conjugation with plant polyphenols for allergenicity reduction. Current Opinion in Food Science, 43, 36–42.

    Article  CAS  Google Scholar 

  • Pasrija, D., & Anandharamakrishnan, C. (2015). Techniques for extraction of green tea polyphenols: A review. Food and Bioprocess Technology, 8(5), 935–950.

    Article  CAS  Google Scholar 

  • Pu, P., Zheng, X., Jiao, L., Chen, L., Yang, H., Zhang, Y., & Liang, G. (2021). Six flavonoids inhibit the antigenicity of β-lactoglobulin by noncovalent interactions: A spectroscopic and molecular docking study. Food Chemistry, 339, 128106.

    Article  CAS  PubMed  Google Scholar 

  • Rabbani, G., Lee, E. J., Ahmad, K., Baig, M. H., & Choi, I. (2018). Binding of tolperisone hydrochloride with human serum albumin: Effects on the conformation, thermodynamics, and activity of HSA. Molecular Pharmaceutics, 15(4), 1445–1456.

    Article  CAS  PubMed  Google Scholar 

  • Raeessi-Babaheydari, E., Farhadian, S., & Shareghi, B. (2021). Evaluation of interaction between citrus flavonoid, naringenin, and pepsin using spectroscopic analysis and docking simulation. Journal of Molecular Liquids, 339, 116763.

    Article  CAS  Google Scholar 

  • Ren, G. Y., Sun, H., Guo, J. Y., Fan, J. L., Li, G., & Xu, S. W. (2019). Molecular mechanism of the interaction between resveratrol and trypsin via spectroscopy and molecular docking. Food & Function, 10(6), 3291–3302.

    Article  CAS  Google Scholar 

  • Roufegarinejad, L., Amarowicz, R., & Jahanban-Esfahlan, A. (2019). Characterizing the interaction between pyrogallol and human serum albumin by spectroscopic and molecular docking methods. Journal of Biomolecular Structure & Dynamics, 37(11), 2766–2775.

    Article  CAS  Google Scholar 

  • Roufegarinejad, L., Jahanban-Esfahlan, A., Sajed-Amin, S., Panahi-Azar, V., & Tabibiazar, M. (2018). Molecular interactions of thymol with bovine serum albumin: Spectroscopic and molecular docking studies. Journal of Molecular Recognition, 31(7).

  • Shahmohammadi, A. (2018). Lysozyme separation from chicken egg white: A review. European Food Research and Technology, 244(4), 577–593.

    Article  CAS  Google Scholar 

  • Stanciuc, N., Turturica, M., Oancea, A. M., Barbu, V., Ionita, E., Aprodu, I., & Rapeanu, G. (2017). Microencapsulation of anthocyanins from grape skins by whey protein isolates and different polymers. Food and Bioprocess Technology, 10(9), 1715–1726.

    Article  CAS  Google Scholar 

  • Sun, C. X., Yang, J., Liu, F. G., Yang, W., Yuan, F., & Gao, Y. X. (2016). Effects of Dynamic high-pressure microfluidization treatment and the presence of quercetagetin on the physical, structural, thermal, and morphological characteristics of zein nanoparticles. Food and Bioprocess Technology, 9(2), 320–330.

    Article  CAS  Google Scholar 

  • Sun, S., Jiang, T., Gu, Y., Yao, L., Du, H., Luo, J., & Che, H. (2023). Contribution of five major apple polyphenols in reducing peanut protein sensitization and alleviating allergencitiy of peanut by changing allergen structure. Food Research International, 164, 112297.

    Article  CAS  PubMed  Google Scholar 

  • Sur, S., & Panda, C. K. (2017). Molecular aspects of cancer chemopreventive and therapeutic efficacies of tea and tea polyphenols. Nutrition, 43–44, 8–15.

    Article  PubMed  Google Scholar 

  • Tang, L., Hu, J., Mei, S., Wu, D., Zhang, J., Wu, W., Li, H. M., & Li, H. (2022). Comparative analysis of the interaction between azobenzene di-maleimide and human serum albumin/lysozyme. Journal of Molecular Structure, 1252.

  • von Staszewski, M., Pilosof, A. M. R., & Jagus, R. J. (2011). Antioxidant and antimicrobial performance of different Argentinean green tea varieties as affected by whey proteins. Food Chemistry, 125(1), 186–192.

    Article  Google Scholar 

  • Wang, C. X., & Liu, Y. Q. (2006). Research progress on property and application of theaflavins. African Journal of Biotechnology, 5(3), 213–218.

    Google Scholar 

  • Wang, M., Xu, J., Han, T., & Tang, L. (2021). Effects of theaflavins on the structure and function of bovine lactoferrin. Food Chemistry, 338, 128048.

    Article  CAS  PubMed  Google Scholar 

  • Wang, W. J., Gan, N., Sun, Q. M., Wu, D., Zhao, L. D., Suo, Z. L., Tang, P. X., & Li, H. (2020). Binding properties of sodium glucose co-transporter-2 inhibitor empagliflozin to human serum albumin: Spectroscopic methods and computer simulations. Journal of Biomolecular Structure & Dynamics, 38(11), 3178–3187.

    Article  CAS  Google Scholar 

  • Wu, D., Duan, R., Tang, L., Zhou, D., Zeng, Z., Wu, W., Hu, J., & Sun, Q. (2022). In-vitro binding analysis and inhibitory effect of capsaicin on lipase. LWT, 154, 112674.

    Article  CAS  Google Scholar 

  • Wu, D., Mei, S., Duan, R., Geng, F., Wu, W., Li, X., Cheng, L., & Wang, C. (2020). How black tea pigment theaflavin dyes chicken eggs: Binding affinity study of theaflavin with ovalbumin. Food Chemistry, 303, 125407.

    Article  CAS  PubMed  Google Scholar 

  • Wu, D., Tang, L., Zeng, Z., Zhang, J., Hu, X., Pan, Q., Geng, F., & Li, H. (2022). Delivery of hyperoside by using a soybean protein isolated-soy soluble polysaccharide nanocomplex: fabrication, characterization, and in vitro release properties. Food Chemistry, 386.

  • Wu, D., Wu, W., Tang, L., Hu, X., Zhang, J., Li, H. M., & Li, H. (2022). Simulation-guided relationships and interaction characteristics of human CtBP1 in complex with protocatechualdehyde. Journal of Molecular Liquids, 360.

  • Wu, W., Hu, X., Zeng, Z., Wu, D., Li, H., & Li, H. (2023). Characterization of the binding properties of sorafenib to c-MYC G-quadruplexes: evidence for screening potential ligands. Journal of Physical Chemistry B.

  • Xie, W., Huang, Y., Xiang, Y., Xiong, S., Manyande, A., & Du, H. (2020). Insights into the binding mechanism of polyphenols and fish myofibrillar proteins explored using multi-spectroscopic methods. Food and Bioprocess Technology, 13(5), 797–806.

    Article  CAS  Google Scholar 

  • Xu, J., Hao, M., Sun, Q., & Tang, L. (2019). Comparative studies of interaction of β-lactoglobulin with three polyphenols. International Journal of Biological Macromolecules, 136, 804–812.

    Article  CAS  PubMed  Google Scholar 

  • Xu, J., Huang, Y., Wei, Y., Weng, X. C., & Wei, X. L. (2023). Study on the interaction mechanism of theaflavin with whey protein: multi-spectroscopy analysis and molecular docking. Foods, 12(8).

  • Yu, X., Cai, X. H., Li, S., Luo, L. Y., Wang, J., Wang, M., & Zeng, L. (2022). Studies on the interactions of theaflavin-3,3′-digallate with bovine serum albumin: multi-spectroscopic analysis and molecular docking. Food Chemistry, 366.

  • Zhang, J., Tang, L., Hu, X., Zeng, Z., Wu, W., Geng, F., Li, H., & Wu, D. (2024). Evaluation of the binding affinity and antioxidant activity of phlorizin to pepsin and trypsin. Food Science and Human Wellness, 13(1), 392–400.

    CAS  Google Scholar 

  • Zhang, Q., Yu, X., Tian, L., Cong, Y., & Li, L. (2023). Therapeutic effects of epigallocatechin and epigallocatechin gallate on the allergic reaction of αs1-casein sensitized mice. Food Science and Human Wellness, 12(3), 882–888.

    Article  CAS  Google Scholar 

  • Zhang, Q. Z., Cheng, Z. Z., Wang, Y. B., & Fu, L. L. (2021). Dietary protein-phenolic interactions: Characterization, biochemical-physiological consequences, and potential food applications. Critical Reviews in Food Science and Nutrition, 61(21), 3589–3615.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, Y., Vanga, S. K., Wang, J., & Raghavan, V. (2018). Effects of Ultrasonic and microwave processing on avidin assay and secondary structures of egg white protein. Food and Bioprocess Technology, 11(11), 1974–1984.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would also like to thank the School of Chemical Engineering of Sichuan University for their assistance in the computer simulation experiment.

Funding

This work was support by the National Key Research and Development Program of China (2022YFD2101001) and the National Natural Science Foundation of China (3236064).

Author information

Authors and Affiliations

Authors

Contributions

Yuanqiao Li: investigation, data curation, and writing—original draft preparation. Mohan Li: visualization. Qinhong Li: software. Fang Geng: resources. Qingling Wang: supervision. Na Gan: software. Shugang Li: resources. Di Wu: conceptualization, methodology, writing—reviewing and editing, and project administration.

Corresponding author

Correspondence to Di Wu.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Li, M., Li, Q. et al. Revealing the Potential of Theaflavin to Reduce Egg Allergenicity at the Molecular Level: A Study of the Binding Affinity of Theaflavin to Egg White Lysozyme. Food Bioprocess Technol (2023). https://doi.org/10.1007/s11947-023-03298-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11947-023-03298-5

Keywords

Navigation