Skip to main content
Log in

Physicochemical, Microstructural, and Release Profile of Gallic Acid and Hesperetin Rich Phenolic Extract in Polysaccharide and Protein-Based Complex Coatings

  • RESEARCH
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The influence of simple and complex carrier agents on the physicochemical, flow, and in vitro release properties of the encapsulated phenolic-rich extract from lemon myrtle leaves was investigated in this study. Polysaccharide-based complex coating (maltodextrin: gum arabic) offers the highest encapsulation efficiency (EE) resulting in maximum retention of phenolic compounds and antioxidant properties as compared to other coatings. However, all of the coatings provided above 97% of EE and passable/poor flow properties. The lightness of encapsulated extract was increased upon the incorporation of a protein-based coating with maltodextrin. The pure and encapsulated extracts indicate amorphous nature with a little degree of crystallinity. A similar release profile was observed for most of the samples in food simulants, initially slowly release and gradually increase to maximum release at around 36 h and then slowly decrease the release rate/availability of phenolics. All of the samples release the highest quantity of phenolics in lipophilic/fatty food simulant. In vitro analysis illustrate that the percent release of phenolics from an encapsulated sample can depend on the selection of coating and release medium. Therefore, appropriate coating material selection and optimization should be performed to get the desired output from the encapsulation of phenolic-rich extract. Polysaccharide and protein-based complex coatings enriched with phenolics could be applicable for the development of functional food products and nutraceuticals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data is contained within this article.

References

  • Abbas, O., Compère, G., Larondelle, Y., Pompeu, D., Rogez, H., & Baeten, V. (2017). Phenolic compound explorer: A mid-infrared spectroscopy database. Vibrational Spectroscopy, 92, 111–118.

    Article  CAS  Google Scholar 

  • Akhavan Mahdavi, S., Jafari, S. M., Assadpoor, E., & Dehnad, D. (2016). Microencapsulation optimization of natural anthocyanins with maltodextrin, gum Arabic and gelatin. International Journal of Biological Macromolecules, 85, 379–385.

    Article  CAS  PubMed  Google Scholar 

  • Andrade, J. K. S., Denadai, M., Andrade, G. R. S., da Cunha, N. C., Barbosa, P. F., Jesus, M. S., & Narain, N. (2018). Development and characterization of microencapsules containing spray dried powder obtained from Brazilian brown, green and red propolis. Food Research International, 109, 278–287.

    Article  CAS  PubMed  Google Scholar 

  • Ballesteros, L. F., Ramirez, M. J., Orrego, C. E., Teixeira, J. A., & Mussatto, S. I. (2017). Encapsulation of antioxidant phenolic compounds extracted from spent coffee grounds by freeze-drying and spray-drying using different coating materials. Food Chemistry, 237, 623–631.

    Article  CAS  PubMed  Google Scholar 

  • Bouayed, J., Hoffmann, L., & Bohn, T. (2011). Total phenolics, flavonoids, anthocyanins and antioxidant activity following simulated gastro-intestinal digestion and dialysis of apple varieties: Bioaccessibility and potential uptake. Food Chemistry, 128(1), 14–21.

    Article  CAS  PubMed  Google Scholar 

  • Busch, V. M., Pereyra-Gonzalez, A., Šegatin, N., Santagapita, P. R., Poklar Ulrih, N., & Buera, M. P. (2017). Propolis encapsulation by spray drying: Characterization and stability. LWT, 75, 227–235.

    Article  CAS  Google Scholar 

  • Campelo, P. H., do Carmo, E. L., Zacarias, R. D., Yoshida, M. I., Ferraz, V. P., de Barros Fernandes, R. V., Botrel, D. A., & Borges, S. V. (2017). Effect of dextrose equivalent on physical and chemical properties of lime essential oil microparticles. Industrial Crops and Products, 102, 105–114.

  • Carr, R. L. (1965). Evaluating flow properties of powders. Chemical Engineering and Processing: Process Intensification, 72, 116–168.

    Google Scholar 

  • Chen, X., Lee, D. S., Zhu, X., & Yam, K. L. (2012). Release kinetics of tocopherol and quercetin from binary antioxidant controlled-release packaging films. Journal of Agricultural and Food Chemistry, 60(13), 3492–3497.

    Article  CAS  PubMed  Google Scholar 

  • Cilek, B., Luca, A., Hasirci, V., Sahin, S., & Sumnu, G. (2012). Microencapsulation of phenolic compounds extracted from sour cherry pomace: Effect of formulation, ultrasonication time and core to coating ratio. European Food Research and Technology, 235(4), 587–596.

    Article  CAS  Google Scholar 

  • Colín-Cruz, M. A., Pimentel-González, D. J., Carrillo-Navas, H., Alvarez-Ramírez, J., & Guadarrama-Lezama, A. Y. (2019). Co-encapsulation of bioactive compounds from blackberry juice and probiotic bacteria in biopolymeric matrices. LWT-Food Science and Technology, 110, 94–101.

    Article  Google Scholar 

  • Dag, D., Kilercioglu, M., & Oztop, M. H. (2017). Physical and chemical characteristics of encapsulated goldenberry (Physalis peruviana L.) juice powder. LWT - Food Science and Technology, 83, 86–94.

    Article  CAS  Google Scholar 

  • Edris, A. E., Kalemba, D., Adamiec, J., & Piątkowski, M. (2016). Microencapsulation of Nigella sativa oleoresin by spray drying for food and nutraceutical applications. Food Chemistry, 204, 326–333.

    Article  CAS  PubMed  Google Scholar 

  • Fitzpatrick, J. J. (2007). Particle properties and the design of solid food particle processing operations. Food and Bioproducts Processing, 85(4), 308–314.

    Article  CAS  Google Scholar 

  • Gómez-Mascaraque, G. L., Martínez-Sanz, M., Fabra, M. J., & López-Rubio, A. (2019). Development of gelatin-coated ι-carrageenan hydrogel capsules by electric field-aided extrusion. Impact of phenolic compounds on their performance. Food Hydrocolloids, 90, 523–533.

    Article  Google Scholar 

  • Ganesan, V., Rosentrater, K. A., & Muthukumarappan, K. (2008). Flowability and handling characteristics of bulk solids and powders – A review with implications for DDGS. Biosystems Engineering, 101(4), 425–435.

    Article  Google Scholar 

  • Gipson, K., Stevens, K., Brown, P., & Ballato, J. (2015). Infrared spectroscopic characterization of photoluminescent polymer nanocomposites. Journal of Spectroscopy, 2015, 489162

  • Grgić, J., Šelo, G., Planinić, M., Tišma, M., & Bucić-Kojić, A. (2020). Role of the encapsulation in bioavailability of phenolic compounds. Antioxidants, 9(10), 923.

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo, Y., Sakulnarmrat, K., & Konczak, I. (2014). Anti-inflammatory potential of native Australian herbs polyphenols. Toxicology Reports, 1, 385–390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hausner, H. H. (1967). Fraction condition in a mass of metal powder. International Journal of Powder Metallurgy, 3(4), 7–13.

    Google Scholar 

  • Kim, E. H. J., Chen, X. D., & Pearce, D. (2005). Effect of surface composition on the flowability of industrial spray-dried dairy powders. Colloids and Surfaces B: Biointerfaces, 46(3), 182–187.

    Article  CAS  PubMed  Google Scholar 

  • Konczak, I., Zabaras, D., Dunstan, M., & Aguas, P. (2010). Antioxidant capacity and phenolic compounds in commercially grown native Australian herbs and spices. Food Chemistry, 122(1), 260–266.

    Article  CAS  Google Scholar 

  • Lebrun, P., Krier, F., Mantanus, J., Grohganz, H., Yang, M., Rozet, E., Boulanger, B., Evrard, B., Rantanen, J., & Hubert, P. (2012). Design space approach in the optimization of the spray-drying process. European Journal of Pharmaceutics and Biopharmaceutics, 80(1), 226–234.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y., Tang, B., Chen, J., & Lai, P. (2018). Microencapsulation of plum (Prunus salicina Lindl.) phenolics by spray drying technology and storage stability. Food Science and Technology, 38, 530–536.

    Article  Google Scholar 

  • Liu, L. X., Marziano, I., Bentham, A. C., Litster, J. D., White, E. T., & Howes, T. (2008). Effect of particle properties on the flowability of ibuprofen powders. International Journal of Pharmaceutics, 362(1), 109–117.

    Article  CAS  PubMed  Google Scholar 

  • Mehran, M., Masoum, S., & Memarzadeh, M. (2020). Improvement of thermal stability and antioxidant activity of anthocyanins of Echium amoenum petal using maltodextrin/modified starch combination as wall material. International Journal of Biological Macromolecules, 148, 768–776.

    Article  CAS  PubMed  Google Scholar 

  • Navarro-Flores, M. J., Ventura-Canseco, L. M. C., Meza-Gordillo, R., Ayora-Talavera, T. D. R., & Abud-Archila, M. (2020). Spray drying encapsulation of a native plant extract rich in phenolic compounds with combinations of maltodextrin and non-conventional wall materials. Journal of Food Science and Technology, 57(11), 4111–4122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papoutsis, K., Golding, J. B., Vuong, Q., Pristijono, P., Stathopoulos, C. E., Scarlett, C. J., & Bowyer, M. (2018). Encapsulation of citrus by-product extracts by spray-drying and freeze-drying using combinations of maltodextrin with soybean protein and ι-carrageenan. Foods, 7(7), 115.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pashazadeh H, Zannou O, Ghellam M, Koca I, Galanakis CM & Aldawoud TMS (2021) Optimization and encapsulation of phenolic compounds extracted from maize waste by freeze-drying, spray-drying, and microwave-drying using maltodextrin. Foods, 10(6).

  • Robert, P., Gorena, T., Romero, N., Sepulveda, E., Chavez, J., & Saenz, C. (2010). Encapsulation of polyphenols and anthocyanins from pomegranate (Punica granatum) by spray drying. International Journal of Food Science & Technology, 45(7), 1386–1394.

    Article  CAS  Google Scholar 

  • Saifullah, M., Yusof, Y. A., Chin, N. L., & Aziz, M. G. (2016a). Physicochemical and flow properties of fruit powder and their effect on the dissolution of fast dissolving fruit powder tablets. Powder Technology, 301, 396–404.

    Article  CAS  Google Scholar 

  • Saifullah, M., Yusof, Y. A., Chin, N. L., Aziz, M. G., Mohammed, M. A. P., & Aziz, N. A. (2016b). Dissolution profiling and its comparison of natural fruit powder effervescent tablets. Journal of Food Engineering, 178, 60–70.

    Article  CAS  Google Scholar 

  • Saifullah, M., McCullum, R., McCluskey, A., & Vuong, Q. (2019). Effects of different drying methods on extractable phenolic compounds and antioxidant properties from lemon myrtle dried leaves. Heliyon, 5(12), e03044–e03044.

    Article  PubMed  PubMed Central  Google Scholar 

  • Saifullah, M., McCullum, R., & Vuong, Q. (2020). Maximising extraction yields of gallic acid and hesperetin from lemon myrtle (Backhousia citriodora) leaf using microwave assisted extraction. Results in Chemistry, 2, 100080

  • Saifullah, M., McCullum, R., & Vuong, Q. V. (2021). Optimization of microwave-assisted extraction of polyphenols from lemon myrtle: Comparison of modern and conventional extraction techniques based on bioactivity and total polyphenols in dry extracts. Processes, 9(12), 2212.

    Article  CAS  Google Scholar 

  • Santoyo-Aleman, D., Sanchez, L. T., & Villa, C. C. (2019). Citric-acid modified banana starch nanoparticles as a novel vehicle for β-carotene delivery. Journal of the Science of Food and Agriculture, 99(14), 6392–6399.

    Article  CAS  PubMed  Google Scholar 

  • Šeregelj, V., Ćetković, G., Čanadanović-Brunet, J., Šaponjac, V. T., Vulić, J., Lević, S., Nedović, V., Brandolini, A., & Hidalgo, A. (2021). Encapsulation of carrot waste extract by freeze and spray drying techniques: An optimization study. LWT- Food Science and Technology, 138, 110696

  • Shishir, M. R. I., Karim, N., Gowd, V., Xie, J., Zheng, X., & Chen, W. (2019). Pectin-chitosan conjugated nanoliposome as a promising delivery system for neohesperidin: Characterization, release behavior, cellular uptake, and antioxidant property. Food Hydrocolloids, 95, 432–444.

    Article  CAS  Google Scholar 

  • Shishir, M. R. I., Karim, N., Xie, J., Rashwan, A. K., & Chen, W. (2020). Colonic delivery of pelargonidin-3-O-glucoside using pectin-chitosan-nanoliposome: Transport mechanism and bioactivity retention. International Journal of Biological Macromolecules, 159, 341–355.

    Article  CAS  PubMed  Google Scholar 

  • Shishir, M. R. I., Xie, L., Sun, C., Zheng, X., & Chen, W. (2018). Advances in micro and nano-encapsulation of bioactive compounds using biopolymer and lipid-based transporters. Trends in Food Science & Technology, 78, 34–60.

    Article  CAS  Google Scholar 

  • Solval, K. M., Sundararajan, S., Alfaro, L., & Sathivel, S. (2012). Development of cantaloupe (Cucumis melo) juice powders using spray drying technology. LWT - Food Science and Technology, 46(1), 287–293.

    Article  CAS  Google Scholar 

  • Sook, J. S., Kim, J. S., & Kwak, H. S. (2003). Microencapsulation of water-soluble isoflavone and physico-chemical property in milk. Archives of Pharmacal Research, 26(5), 426–431.

    Article  PubMed  Google Scholar 

  • Šturm, L., Osojnik Črnivec, I. G., Istenič, K., Ota, A., Megušar, P., Slukan, A., Humar, M., Levic, S., Nedović, V., Kopinč, R., Deželak, M., Pereyra Gonzales, A., & Poklar Ulrih, N. (2019). Encapsulation of non-dewaxed propolis by freeze-drying and spray-drying using gum Arabic, maltodextrin and inulin as coating materials. Food and Bioproducts Processing, 116, 196–211.

    Article  Google Scholar 

  • Sun, X., Cameron, R. G., & Bai, J. (2019). Microencapsulation and antimicrobial activity of carvacrol in a pectin-alginate matrix. Food Hydrocolloids, 92, 69–73.

    Article  CAS  Google Scholar 

  • Symes A, Shavandi A, Zhang H, Mohamed Ahmed IA, Al-Juhaimi FY & Bekhit AEA (2018) Antioxidant activities and caffeic acid content in New Zealand asparagus (Asparagus officinalis) roots extracts. Antioxidants, 7(4).

  • Tao, Y., Wang, P., Wang, J., Wu, Y., Han, Y., & Zhou, J. (2017). Combining various wall materials for encapsulation of blueberry anthocyanin extracts: Optimization by artificial neural network and genetic algorithm and a comprehensive analysis of anthocyanin powder properties. Powder Technology, 311, 77–87.

    Article  CAS  Google Scholar 

  • Tolve, R., Galgano, F., Caruso, M. C., Tchuenbou-Magaia, F. L., Condelli, N., Favati, F., & Zhang, Z. (2016). Encapsulation of health-promoting ingredients: Applications in foodstuffs. International Journal of Food Sciences and Nutrition, 67(8), 888–918.

    Article  CAS  PubMed  Google Scholar 

  • Zuidam, N. J., & Shimoni, E. (2010). Overview of microencapsulates for use in food products or processes and methods to make them. In N. J. Zuidam & V. Nedovic (Eds.), Encapsulation Technologies for Active Food Ingredients and Food Processing (pp. 3–29). Springer.

    Chapter  Google Scholar 

Download references

Acknowledgements

We acknowledge the support from the Research Training Program (RTP) Scholarship to first author Md Saifullah and second author Rebecca McCullum by the Australian Government. The authors also would like to thank the Electron Microscope and X-Ray Unit (EMX) of the University of Newcastle, Australia, for supporting the SEM and XRD analysis.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, investigation, data collection and analysis, preparation of first draft: Md Saifullah, Quan Van Vuong; review & editing: all authors; conceptualization, supervision, review & editing: Quan Van Vuong.

Corresponding authors

Correspondence to Md Saifullah or Quan Van Vuong.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saifullah, M., McCullum, R., Akanbi, T.O. et al. Physicochemical, Microstructural, and Release Profile of Gallic Acid and Hesperetin Rich Phenolic Extract in Polysaccharide and Protein-Based Complex Coatings. Food Bioprocess Technol 17, 1610–1624 (2024). https://doi.org/10.1007/s11947-023-03219-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-023-03219-6

Keywords

Navigation