Skip to main content
Log in

A Comprehensive Review on Vacuum Impregnation: Mechanism, Applications and Prospects

  • REVIEW
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Vacuum impregnation (VI), the revised version of osmotic dehydration technology (OD), is used to improve the nutritional properties of food products and promote the production of fortified foods by adding functional elements to the impregnating solution. This emerging technology can be applied to get food matrices with superior quality, better shelf life, improved sensory and nutritional characteristics. A comprehensive review of vacuum impregnation for the food sector is scanty at the moment. The current review covers the basic features of vacuum impregnation, its mechanism, variables that influence the processes, applications and recent advancements in the field of vacuum impregnation viz. ultrasound, pulsed electric field, microwave, ohmic heating and high pressure processing. The compilation of the applications of vacuum impregnation technology for various operations in a variety of matrices indicates the potential of the technology in food processing. A detailed description regarding the major industrial applications of vacuum impregnation and the challenges faced by the industry is also envisaged with emphasis on its future prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

(Adopted from Guz et al., 2020)

Similar content being viewed by others

Data Availability

All data underlaying the results are available as part of the article and no additional source data are required. The data that supports the findings of this study are available within the article (and its supplementary material). All the data for the range of process parameters for VI of dehydrated and minimally processed foods (Table 1) are available at Springer Nature (Food Engineering Reviews), https://doi.org/10.1007/s12393-022-09312-4. All the data for (Fig. 2) are openly available at MDPI (Processes), https://doi.org/10.3390/pr8040428.

References

  • Abalos, R. A., Naef, E. F., Aviles, M. V., & Gómez, M. B. (2020). Vacuum impregnation: a methodology for the preparation of a ready-to eat sweet potato enriched in polyphenols. LWT – Food Science Technology, 131, 109773. https://doi.org/10.1016/j.lwt.2020.109773

    Article  CAS  Google Scholar 

  • Akman, P. K., Uysal, E., Ozkaya, G. U., Tornuk, F., & Durak, M. Z. (2019). Development of probiotic carrier dried apples for consumption as snack food with the impregnation of Lactobacillus paracasei. LWT – Food Science and Technology, 103, 60–68. https://doi.org/10.1016/j.lwt.2018.12.070

    Article  CAS  Google Scholar 

  • Alizehi, M. H., Niakousari, M., Fazaeli, M., & Iraji, M. (2020). Modeling of vacuum-and ultrasound-assisted osmodehydration of carrot cubes followed by combined infrared and spouted bed drying using artificial neural network and regression models. Journal of Food Process Engineering, 43(12), e13563.

    Article  CAS  Google Scholar 

  • Alolga, R. N., Osae, R., Essilfie, G., Saalia, F. K., Akaba, S., & Chikari, F. (2021). Sonication, osmosonication and vacuum-assisted osmosonication pretreatment of Ghanaian garlic slices: Effect on physicochemical properties and quality characteristics. Food Chemistry, 343, 128535.

    Article  CAS  PubMed  Google Scholar 

  • Amami, E., Khezami, W., Mezrigui, S., Badwaik, L. S., Bejar, A. K., Perez, C. T., & Kechaou, N. (2017). Effect of ultrasound-assisted osmotic dehydration pretreatment on the convective drying of strawberry. Ultrasonics Sonochemistry, 36, 286–300.

    Article  CAS  PubMed  Google Scholar 

  • Anino, S. V., Salvatori, D. M., & Alzamora, S. M. (2006). Changes in calcium level and mechanical properties of apple tissue due to impregnation with calcium salts. Food Research International, 39(2), 154–164.

    Article  CAS  Google Scholar 

  • Ashitha, G. N., & Prince, M. V. (2018). Vacuum Impregnation: Applications in food industry. International Journal of Food and Fermentation Technology, 8(2), 141–151. https://doi.org/10.30954/2277-9396.02.2018.3

  • Aslam, R., Alam, M. S., Kaur, J., Panayampadan, A. S., Dar, O. I., Kothakota, A., & Pandiselvam, R. (2021). Understanding the effects of ultrasound processing on texture and rheological properties of food. Journal of Textural Studies. https://doi.org/10.1111/jtxs.1264465

    Article  Google Scholar 

  • Assis, F. R., Morais, R. M. S. C., & Morais, A. M. M. B. (2017). Mathematical modelling of osmotic dehydration kinetics of apple cubes. Journal of Food Processing and Preservation. https://doi.org/10.1111/jfpp.12895

    Article  Google Scholar 

  • Bellary, A. N., Indiramma, A. R., Prakash, M., Baskaran, R., Rastogi, N. K. (2016). Anthocyanin infused watermelon rind and its stability during storage. Innovative Food Science & Emerging Technologies, 33, 554–562. https://doi.org/10.1016/j.ifset.2015.10.010

  • Betoret, E., Betoret, N., Rocculi, P., & Dalla Rosa, M. (2015). Strategies to improve food functionality: Structure-property relationships on high pressures homogenization, vacuum impregnation and drying technologies. Trends in Food Science and Technology, 46(1), 1–12. https://doi.org/10.1016/j.tifs.2015.07.006

    Article  CAS  Google Scholar 

  • Castagnini, J. M., Betoret, N., Betoret, E., & Fito, P. (2015). Vacuum impregnation and air drying temperature effect on individual anthocyanins and antiradical capacity of blueberry juice included into an apple matrix. LWT - Food Science and Technology, 64(2), 1289–1296. https://doi.org/10.1016/j.lwt.2015.06.044

    Article  CAS  Google Scholar 

  • Cheng, X. F., Zhang, M., Adhikari, B., Islam, M. N. (2014). Effect of power ultrasound and pulsed vacuum treatments on the dehydration kinetics, distribution, and status of water in osmotically dehydrated strawberry: a combined NMR and DSC study. Food and Bioprocess Technology, 7, 2782–2792.

  • Chong, J. X., Lai, S., & Yang, H. (2015). Chitosan combined with calcium chloride impacts fresh-cut honeydew melon by stabilising nanostructures of sodium-carbonate-soluble pectin. Food Control.

  • Chotphruethipong, L, Aluko, R. E., & Benjakul, S. (2019). Enhanced Asian sea bass skin defatting using porcine lipase with the aid of pulsed electric field pre-treatment and vacuum impregnation. Process Biochemistry.

  • Correa, J. L. G., Pereira, L. M., Vieira, G. S., & Hubinger, M. D. (2010). Mass transfer kinetics of pulsed vacuum osmotic dehydration of guavas. Journal of Food Engineering, 96(4), 498–504. https://doi.org/10.1016/j.jfoodeng.2009.08.032

    Article  Google Scholar 

  • de Lima, M. M., Tribuzi, G., de Souza, J. A. R., de Souza, I. G., Laurindo, J. B., & Carciof, B. A. M. (2016). Vacuum impregnation and drying of calcium-fortified pineapple snacks. LWT-Food Science and Technology, 72, 501–509. https://doi.org/10.1016/j.lwt.2016.05.016

    Article  CAS  Google Scholar 

  • de Oliveira, P. M., Ramos, A. M., Martins, E. M. F., Vieira, É. N. R., Soares, A. D. S., & de Noronha, M. C. (2017). Comparison of vacuum impregnation and soaking techniques for addition of the probiotic Lactobacillus acidophilus to minimally processed melon. International Journal of Food Science & Technology, 52(12), 2547–2554.

    Article  Google Scholar 

  • Derossi, A., De Pilli, T., & Severini, C. (2010). Reduction in the pH of vegetables by vacuum impregnation: A study on pepper. Journal of Food Engineering, 99(1), 9–15. https://doi.org/10.1016/j.jfoodeng.2010.01.019

    Article  CAS  Google Scholar 

  • Derossi, A., De Pilli, T., & Severini, C. (2012). The application of vacuum impregnation techniques in food industry. Dr. Benjamin Valdez (Eds.), Scientific, Health and Social Aspects of the Food Industry, (25–56). In Tech. https://doi.org/10.5772/31435

  • Derossi, A., De Pilli, T., & Severini, C. (2013). Application of pulsed vacuum acidification for the pH reduction of mushrooms. LWT-Food Science and Technology, 54(2), 585–591.

    Article  CAS  Google Scholar 

  • Derossi, A., Francavilla, M., Monteleone, M., Caporizzi, R., & Severini, C. (2021). From biorefinery of microalgal biomass to vacuum impregnation of fruit. A multidisciplinary strategy to develop innovative food with increased nutritional properties. Innovative Food Science & Emerging Technologies, 70, 102677. https://doi.org/10.1016/j.ifset.2021.102677

    Article  CAS  Google Scholar 

  • Derossi, A., Ricci, I., Fiore, A. G., & Severini, C. (2018). Apple slices enriched with aloe vera by vacuum impregnation. Italian Journal of Food Science, 30(2).

  • Diamante, L. M., Hironaka, K., Yamaguchi, Y., & Nademude, E. (2014). Optimisation of vacuum impregnation of blackcurrant-infused apple cubes: Application of response surface methodology. International Journal of Food Science and Technology, 49(3), 689–695. https://doi.org/10.1111/ijfs.12351

    Article  CAS  Google Scholar 

  • Duarte-Correa, Y., Díaz-Osorio, A., Osorio-Arias, J., Sobral, P. J., & Vega-Castro, O. (2020). Development of fortified low-fat potato chips through vacuum impregnation and microwave vacuum drying. Innovative Food Science and Emerging Technologies. https://doi.org/10.1016/j.ifset.2020.102437128

    Article  Google Scholar 

  • Dymek, K., Dejmek, P., Galindo, F. G., & Wisniewski, M. (2015). Influence of vacuum impregnation and pulsed electric field on the freezing temperature and ice propagation rates of spinach leaves. LWT-Food Science and Technology, 64(1), 497–502. https://doi.org/10.1016/j.lwt.2015.05.016

    Article  CAS  Google Scholar 

  • Erkmen, O., & Bozoglu, T. F. (2016). Food preservation by reducing water activity. Food microbiology: Principles into practice, 44–58.

  • Flores-Andrade, E., Pascual-Pineda, L. A., Alarcon-Elvira, F. G., Rascon-Diaz, M. P., Pimentel-Gonzalez, D. J., & Beristain, C. I. (2017). Effect of vacuum on the impregnation of Lactobacillus rhamnosus microcapsules in apple slices using double emulsion. Journal of Food Engineering, 202, 18–24. https://doi.org/10.1016/j.jfoodeng.2017.02.00

    Article  CAS  Google Scholar 

  • Galindo, F. G., & Yusof, N. L. (2015). New insights into the dynamics of vacuum impregnation of plant tissues and its metabolic consequences. Journal of the Science of Food and Agriculture, 95(6), 1127–1130. https://doi.org/10.1002/jsfa.6777

    Article  CAS  PubMed  Google Scholar 

  • Gao, M., Nomura, K., Ando, Y., Nakaura, Y., Zhang, Z., & Yamamoto, K. (2023). Vacuum impregnation of liquid into carrot assisted by high hydrostatic pressure. High Pressure Research, 1–14.

  • George, J. M., Selvan, T. S., & Rastogi, N. K. (2016). High-pressure-assisted infusion of bioactive compounds in apple slices. Innovative Food Science & Emerging Technologies, 33, 100–107.

    Article  CAS  Google Scholar 

  • González-Pérez, J. E., Jiménez-González, O., Ramírez-Corona, N., Guerrero-Beltrán, J. A., & López-Malo, A. (2022). Vacuum impregnation on apples with grape juice concentrate: Effects of pressure, processing time, and juice concentration. Innovative Food Science & Emerging Technologies, 77, 102981.

    Article  Google Scholar 

  • Grajales-Lagunes, A., Cabrera-Ruiz, L., Gutierrez-Miceli, F., Ruiz-Cabrera, M. A., Dendooven, L., & Abud-Archila, M. (2019). Anthocyanins from blackberry (Rubus fructicosus l.) impregnated in yam bean (Pachyrhizus erosus (l.) urb.) by osmotic dehydration. Food Science and Technology (brazil), 39(4), 922–929. https://doi.org/10.1590/fst.15618

    Article  Google Scholar 

  • Granato, D., Branco, G. F., Nazzaro, F., Cruz, A. G., & Faria, J. A. F. (2010). Functional foods and nondairy probiotic food development: Trends, concepts, and products. Comprehensive Reviews in Food Science and Food Safety, 9(3), 292–302. https://doi.org/10.1111/j.1541-4337.2010.00110

    Article  CAS  PubMed  Google Scholar 

  • Guillemin, A., Degraeve, P., Noël, C., & Saurel, R. (2008). Influence of impregnation solution viscosity and osmolarity on solute uptake during vacuum impregnation of apple cubes (var. Granny Smith). Journal of Food Engineering, 86(4), 475–483.

    Article  Google Scholar 

  • Gupta, R., Singh, B., & Shivhare, U. S. (2012). Optimization of osmo-convective dehydration process for the development of honey-ginger candy using response surface methodology. Drying Technology, 30(7), 750–759. https://doi.org/10.1080/07373937.2012.661818

    Article  CAS  Google Scholar 

  • Guz, T., Rydzak, L., & Domin, M. (2020). Influence of selected parameters and different methods of implementing vacuum impregnation of apple tissue on its effectiveness. Processes, 8(4), 428.

    Article  Google Scholar 

  • Hamad, S. H. (2012). In Bhat R, Alias AK, Paliyath G, Progress in food preservation, Wiley, Blackwell, UK.

  • Hinestroza-Córdoba, L. I., Barrera, C., Seguí, L., & Betoret, N. (2021). Potential use of vacuum impregnation and high-pressure homogenization to obtain functional products from lulo fruit (Solanum quitoense Lam.). Foods, 10(4), 817.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hironaka, K., Kikuchi, M., Koaze, H., Sato, T., Kojima, M., Yamamoto, K., Yasuda, K., Mori, M., & Tsuda, S. (2011). Ascorbic acid enrichment of whole potato tuber by vacuum-impregnation. Food Chemistry, 127(3), 1114–1118. https://doi.org/10.1016/J.foodchem.2011.01.111

    Article  CAS  PubMed  Google Scholar 

  • Hironaka, K., Koaze, H., Oda, Y., & Shimada, K. (2015). Zinc enrichment of whole potato tuber by vacuum impregnation. Journal of Food Science and Technology, 52(4), 2352–2358. https://doi.org/10.1007/s13197-013-1194-5

    Article  CAS  PubMed  Google Scholar 

  • Hironaka, K., Oda, Y., & Koaze, H. (2014). Iron enrichment of whole potato tuber by vacuum impregnation. LWT-Food Science and Technology, 59(1), 504–509. https://doi.org/10.1016/j.lwt.2014.04.043

    Article  CAS  Google Scholar 

  • Islam, M. Z., Das, S., Monalisa, K., & Sayem, A. S. M. (2019). Influence of osmotic dehydration on mass transfer kinetics and quality retention of ripe papaya (Carica papaya L) during drying. Agricultural Engineering, 1(2), 220–234. https://doi.org/10.3390/agriengineering1020016

    Article  Google Scholar 

  • Janowicz, M., Ciurzyńska, A., & Lenart, A. (2021). Effect of osmotic pretreatment combined with vacuum impregnation or high pressure on the water diffusion coefficients of convection drying: Case study on apples. Foods, 10(11), 2605.

    Article  PubMed  PubMed Central  Google Scholar 

  • Joshi, A., Kar, A., Rudra, S. G., Sagar, V. R., Varghese, E., Lad, M., & Singh, B. (2016). Vacuum impregnation: A promising way for mineral fortification in potato porous matrix (potato chips). Journal of Food Science and Technology, 53, 4348–4353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joshi, A., Prajapati, U., Sethi, S., Arora, B., & Sharma, R. R. (2019). Fortification in fresh and fresh-cut horticultural products. Technologies and mechanisms for safety control. Elsevier Inc. https://doi.org/10.1016/B978-0-12-816184-5.00009-4

    Book  Google Scholar 

  • Kang, J. W., & Kang, D. H. (2016). Enhanced antimicrobial effect of organic acid washing against foodborne pathogens on broccoli by vacuum impregnation. International Journal of Food Microbiology, 217, 85–93. https://doi.org/10.1016/j.ijfoodmicro.2015.10.004

    Article  CAS  PubMed  Google Scholar 

  • Karasa, I. (2018). Application of pulsed electric fields and vacuum impregnation to improve the freezing tolerance of fresh Origanum vulgare leaves. Retrieved January 21, 2023, from http://lup.lub.lu.se/student-papers/record/8936421.135

  • Kaushal, P., & Sharma, H. K. (2016). Osmo-convective dehydration kinetics of jackfruit (Artocarpus heterophyllus). Journal of the Saudi Society of Agricultural Sciences, 15(2), 118–126. https://doi.org/10.1016/j.jssas.2014.08.001

    Article  Google Scholar 

  • Li, Y., Zhang, L., Chen, F., Lai, S., & Yang, H. (2018). Effects of vacuum impregnation with calcium ascorbate and disodium stannous citrate on Chinese red bayberry. Food and Bioprocess Technology, 11(7), 1300–1316. https://doi.org/10.1007/s11947-018-2092-7

    Article  CAS  Google Scholar 

  • Mashkour, M., Maghsoudlou, Y., Kashaninejad, M., & Aalami, M. (2018a). Iron fortification of whole potato using vacuum impregnation technique with a pulsed electric field pre-treatment. Potato Research, 61(4), 375–389. https://doi.org/10.1007/s11540-018-9392-1

    Article  Google Scholar 

  • Mashkour, M., Maghsoudlou, Y., Kashaninejad, M., & Aalami, M. (2018b). Effect of ultrasound pre-treatment on iron fortifcation of potato using vacuum impregnation. Journal of Food Processing and Preservation, 42(5), 13590. https://doi.org/10.1111/jfpp.13590

    Article  CAS  Google Scholar 

  • Mierzwa, D., Szadzińska, J., Gapiński, B., Radziejewska-Kubzdela, E., & Biegańska-Marecik, R. (2022). Assessment of ultrasound-assisted vacuum impregnation as a method for modifying cranberries’ quality. Ultrasonics Sonochemistry, 89, 106117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mierzwa, D., Szadzińska, J., Radziejewska-Kubzdela, E., & Biegańska-Marecik, R. (2021). Ultrasound-assisted vacuum impregnation as a strategy for the management of potato by-products. Sustainability, 13(6), 3437.

    Article  CAS  Google Scholar 

  • Moraga, M. J., Moraga, G., Fito, P. J., & Martinez-Navarrete, N. (2009). Effect of vacuum impregnation with calcium lactate on the osmotic dehydration kinetics and quality of osmo dehydrated grapefruit. Journal of Food Engineering, 90(3), 372–379. https://doi.org/10.1016/j.jfoodeng.2008.07.007

    Article  Google Scholar 

  • Moreira, R. G., & Almohaimeed, S. (2018). Technology for processing of potato chips impregnated with red rootbeet phenolic compounds. Journal of Food Engineering, 228, 57–68. https://doi.org/10.1016/j.jfoodeng.2018.02.010

    Article  CAS  Google Scholar 

  • Moreno, J., Espinoza, C., Simpson, R., Petzold, G., Nuñez, H., & Gianelli, M. P. (2016a). Application of ohmic heating/vacuum impregnation treatments and air drying to develop an apple snack enriched in folic acid. Innovative Food Science and Emerging Technologies, 33, 381–386. https://doi.org/10.1016/j.ifset.2015.12.014124

    Article  CAS  Google Scholar 

  • Moreno, J., Gonzales, M., Zúniga, P., Petzold, G., Mella, K., & Munoz, O. (2016b). Ohmic heating and pulsed vacuum effect on dehydration processes and polyphenol component retention of osmodehydrated blueberries (cv. Tifblue). Innovative Food Science and Emerging Technologies, 36, 112–119. https://doi.org/10.1016/j.ifset.2016.06.005

    Article  CAS  Google Scholar 

  • Moreno, J., Simpson, R., Baeza, A., Morales, J., Muñoz, C., Sastry, S., & Almonacid, S. (2012). Effect of ohmic heating and vacuum impregnation on the osmo dehydration kinetics and microstructure of strawberries (cv. Camarosa). LWT-Food Science and Technology, 45(2), 148–154. https://doi.org/10.1016/j.lwt.2011.09.010

    Article  CAS  Google Scholar 

  • Moreno, J., Simpson, R., Estrada, D., Lorenzen, S., Moraga, D., & Almonacid, S. (2011a). Effect of pulsed-vacuum and ohmic heating on the osmo dehydration kinetics, physical properties and microstructure of apples (cv. Granny Smith). Innovative Food Science Emerging Technologies.

  • Moreno, J., Simpson, R., Sayas, M., Segura, I., Aldana, O., & Almonacid, S. (2011b). Influence of ohmic heating and vacuum impregnation on the osmotic dehydration kinetics and microstructure of pears (cv. Packham’s Triumph). Journal of Food Engineering, 104(4), 621–627. https://doi.org/10.1016/j.jfoodeng.2011.01.029

    Article  Google Scholar 

  • Mujica-Paz, H., Argüelles-Pina, L. D., Perez-Velazquez, L. C., Valdez Fragoso, A., & Welti-Chanes, J. (2006). Vacuum pulse and brine composition effect on pickling kinetics of whole jalapeno peppers. Innovative Food Science and Emerging Technologies, 7(3), 195–202.

    Article  CAS  Google Scholar 

  • Mundada, M., Hathan, B. S., & Maske, S. (2011). Mass transfer kinetics during osmotic dehydration of pomegranate arils. Journal of Food Science, 76(1), E31–E39. https://doi.org/10.1111/j.1750-3841.2010.01921.x

    Article  CAS  PubMed  Google Scholar 

  • Nawirska-Olszańska, A., Pasławska, M., Stepien, B., Oziembłowski, M., Sala, K., & Smorowska, A. (2020). Effect of vacuum impregnation with apple-pear juice on content of bioactive compounds and antioxidant activity of dried chokeberry fruit. Foods, 9(1), 1–11. https://doi.org/10.3390/foods9010108

    Article  CAS  Google Scholar 

  • Neri, L., Di Biase, L., Sacchetti, G., Di Mattia, C., Santarelli, V., Mastrocola, D., & Pittia, P. (2016). Use of vacuum impregnation for the production of high quality fresh-like apple products. Journal of Food Engineering, 179, 98–108. https://doi.org/10.1016/j.jfoodeng.2016.02.002

    Article  CAS  Google Scholar 

  • Nowacka, M., & Wedzik, M. (2016). Effect of ultrasound treatment on microstructure, colour and carotenoid content in fresh and dried carrot tissue. Applied Acoustics, 103, 163–171.

    Article  Google Scholar 

  • Nyoto, C. I. (2018). Optimization of pulse electric field treatment and vacuum impregnation for reducing freezing injury of thawed rucola leaves. Retrieved January 15, 2023, from http://lup.lub.lu.se/student-papers/record/8960452.134

  • Occhino, E., Hernando, I., Llorca, E., Neri, L., & Pittia, P. (2011). Effect of vacuum impregnation treatments to improve quality and texture of zucchini (Cucurbita pepo, L). Procedia Food Science, 1, 829–835. https://doi.org/10.1016/j.profoo.2011.09.125

    Article  Google Scholar 

  • Pallas, L. A., Pegg, R. B., & Kerr, W. L. (2013). Quality factors, antioxidant activity, and sensory properties of jet-tube dried rabbit eye blueberries. Journal of the Science of Food and Agriculture, 93(8), 1887–1897. https://doi.org/10.1002/jsfa.598564

    Article  CAS  PubMed  Google Scholar 

  • Panayampadan, A. S., Alam, M. S., Aslam, R., & Kaur, J. (2022). Vacuum impregnation process and its potential in modifying sensory, physicochemical and nutritive characteristics of food products. Food Engineering Reviews, 14(2), 229–256.

    Article  CAS  Google Scholar 

  • Parniakov, O., Bals, O., Lebovka, N., & Vorobiev, E. (2016). Pulsed electric field assisted vacuum freeze-drying of apple tissue. Innovative Food Science & Emerging Technologies, 35, 52–57.

    Article  Google Scholar 

  • Pasławska, M., Stępień, B., Nawirska-Olszańska, A., Maślankowski, R., & Rydzak, L. (2017). Effect of vacuum impregnation on drying kinetics and selected quality factors of apple cubes. International Journal of Food Engineering. https://doi.org/10.1515/ijfe-2016-0309

    Article  Google Scholar 

  • Petersen, B. (2015). Fortification and impregnation practices in food processing. Suvendu Bhattacharya (Eds.), Conventional and advanced food Processing technologies (338–355). John Wiley & Sons, Ltd.

  • Phianmongkhol, A., & Wirjantoro, T. I. (2016). Effect of ripening stage and vacuum pressure on vacuum impregnated mango “Chok Anan.” International Food Research Journal, 23(3), 1085–1091.

    Google Scholar 

  • Phisut, N. (2012). Factors affecting mass transfer during osmotic dehydration of fruits. International Food Research Journal, 19(1), 7.

    CAS  Google Scholar 

  • Quintanilla, A., Mencía, A., Powers, J., Rasco, B., Tang, J., & Sablani, S. S. (2018). Vacuum impregnation of firming agents in red raspberries. Journal of the Science of Food and Agriculture, 98(10), 3706–3714. https://doi.org/10.1002/jsfa.8878

    Article  CAS  PubMed  Google Scholar 

  • Radziejewska-Kubzdela, E., Bieganska-Marecik, R., & Kidon, M. (2014). Applicability of vacuum impregnation to modify physico-chemical, sensory and nutritive characteristics of plant origin products—A review. International Journal of Molecular Sciences, 15(9), 16577–16610. https://doi.org/10.3390/ijms150916577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rupasinghe, H., & Joshi, A. (2010). Optimization of bioactive fortifcation in apple snacks through vacuum impregnation using response surface methodology. Food Nutrition Science, 1(2), 45–52. https://doi.org/10.4236/fns.2010.12008

    Article  CAS  Google Scholar 

  • Saleena, P., Jayashree, E., & Anees, K. (2021). Recent developments in osmotic dehydration of fruits and vegetables: A review. The Pharma Innovation Journal, SP-11 (2), 40–50.

  • Sanzana, S., Gras, M. L., & Vidal-Brotóns, D. (2011). Functional foods enriched in aloe vera. Effects of vacuum impregnation and temperature on the respiration rate and the respiratory quotient of some vegetables. Procedia Food Science.

  • Schulze, B., Hubbermann, E. M., & Schwarz, K. (2014). Stability of quercetin derivatives in vacuum impregnated apple slices after drying (microwave vacuum drying, air drying, freeze drying) and storage. LWT-Food Science and Technology, 57(1), 426–433. https://doi.org/10.1016/j.lwt.2013.11.021

    Article  CAS  Google Scholar 

  • Schulze, B., Peth, S., Hubbermann, E. M., & Schwarz, K. (2012). The influence of vacuum impregnation on the fortification of apple parenchyma with quercetin derivatives in combination with pore structures X-ray analysis. Journal of Food Engineering, 109(3), 380–387. https://doi.org/10.1016/j.jfoodeng.2011.11.015

    Article  CAS  Google Scholar 

  • Servillo, L., Balestrieri, M. L., Giovane, A., De Sio, F., Cannavacciuolo, M., Squitieri, G., & Castaldo, D. (2018). Improving diced tomato firmness by pulsed vacuum calcification. LWT- Food Science and Technology, 92, 451–457.

    Article  CAS  Google Scholar 

  • Sulistyawati, I., Dekker, M., Fogliano, V., & Verkerk, R. (2018). Osmotic dehydration of mango: Effect of vacuum impregnation, high pressure, pectin methylesterase and ripeness on quality. LWT- Food Science and Technology, 98, 179–186. https://doi.org/10.1016/j.lwt.2018.08.032129

    Article  CAS  Google Scholar 

  • Talens, P., Pérez-Masía, R., Fabra, M. J., Vargas, M., & Chiralt, A. (2012). Application of edible coatings to partially dehydrated pineapple for use in fruit–cereal products. Journal of Food Engineering, 112(1–2), 86–93. https://doi.org/10.1016/j.jfoodeng.2012.03.022

    Article  CAS  Google Scholar 

  • Tappi, S., Tylewicz, U., Romani, S., Dalla Rosa, M., Rizzi, F., & Rocculi, P. (2017). Study on the quality and stability of minimally processed apples impregnated with green tea polyphenols during storage. Innovative Food Science and Emerging Technologies, 39, 148–155. https://doi.org/10.1016/j.ifset.2016.12.007

    Article  CAS  Google Scholar 

  • Tiwari, P., Joshi, A., Varghese, E., & Thakur, M. (2018). Process standardization and storability of calcium fortified potato chips through vacuum impregnation. Journal of Food Science and Technology, 55(8), 3221–3231. https://doi.org/10.1007/s13197-018-3254-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiwari, P., Thakur, M., Joshi, A., Raigond, P., & Arora, B. (2022). Development of Iron fortified potato fries through Vacuum assisted processing strategies. Journal of Food Science and Technology, 59(12), 4644–4652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tortoe, C. (2010). A review of osmo dehydration for food industry. African Journal of Food Science, 4(6), 303–324.

    CAS  Google Scholar 

  • Tylewicz, U., Romani, S., Widell, S., & Gόmez Galindo, F. (2013). Induction of vesicle formation by exposing apple tissue to vacuum impregnation. Food and Bioprocess Technology, 6, 1099–1104.

    Article  CAS  Google Scholar 

  • Vargas, M., Chiralt, A., Albors, A., & González-Martínez, C. (2009). Effect of chitosan-based edible coatings applied by vacuum impregnation on quality preservation of fresh-cut carrot. Postharvest Biology and Technology.

  • Velickova, E., Tylewicz, U., Dalla Rosa, M., Winkelhausen, E., Kuzmanova, S., & Romani, S. (2018). Effect of pulsed electric field coupled with vacuum infusion on quality parameters of frozen/ thawed strawberries. Journal of Food Engineering, 233, 57–64. https://doi.org/10.1016/j.jfoodeng.2018.03.030133

    Article  Google Scholar 

  • Vieira, G. S., Pereira, L. M., & Hubinger, M. D. (2012). Optimisation of osmotic dehydration process of guavas by response surface methodology and desirability function. International Journal of Food Science and Technology, 47(1), 132–140. https://doi.org/10.1111/j.1365-2621.2011.02818.x

    Article  CAS  Google Scholar 

  • Yang, H., Wu, Q., Ng, L. Y., & Wang, S. (2017). Effects of vacuum impregnation with calcium lactate and pectin methylesterase on quality attributes and chelate-soluble pectin morphology of fresh-cut papayas. Food and Bioprocess Technology, 10(5), 901–913. https://doi.org/10.1007/s11947-017-1874-7

    Article  CAS  Google Scholar 

  • Yang, Z., Li, H., Xu, Y., Liu, Y., Kan, H., & Fan, F. (2019). Vacuum impregnation and drying of iron-fortified water chestnuts. Journal of Food Processing and Preservation, 43(12), 1–11. https://doi.org/10.1111/jfpp.14260

    Article  CAS  Google Scholar 

  • Yılmaz, F. M., & Bilek, S. E. (2017). Natural colorant enrichment of apple tissue with black carrot concentrate using vacuum impregnation. International Journal of Food Science and Technology, 52(6), 1508–1516. https://doi.org/10.1111/ijfs.13426

    Article  CAS  Google Scholar 

  • Yılmaz, F. M., & Bilek, S. E. (2018). Ultrasound-assisted vacuum impregnation on the fortification of fresh-cut apple with calcium and black carrot phenolics. Ultrasonics Sonochemistry, 48, 509–516. https://doi.org/10.1016/j.ultsonch.2018.07.007

    Article  CAS  PubMed  Google Scholar 

  • Yusof, N. L., Wadso, L., Rasmusson, A. G., & Gomez Galindo, F. (2017). Influence of vacuum impregnation with different substances on the metabolic heat production and sugar metabolism of spinach leaves. Food and Bioprocess Technology, 10(10), 1907–1917. https://doi.org/10.1007/s11947-017-1959-3

    Article  CAS  Google Scholar 

  • Zielinska, M., Ropelewska, E., & Markowski, M. (2017). Thermophysical properties of raw, hot-air and microwave-vacuum dried cranberry fruits (Vaccinium macrocarpon). LWT-Food Science and Technology, 85, 204–211.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Director, ICAR-Indian Institute of Spices Research, Kozhikode and Dean, School of Ocean Science and Technology, and Kochi, Kerala, India for the support and guidance during the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Saleena P: conceptualization—writing original draft. Jayashree E: conceptualization—editing and review. Anees K: editing and review.

Corresponding author

Correspondence to E. Jayashree.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saleena, P., Jayashree, E. & Anees, K. A Comprehensive Review on Vacuum Impregnation: Mechanism, Applications and Prospects. Food Bioprocess Technol 17, 1434–1447 (2024). https://doi.org/10.1007/s11947-023-03185-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-023-03185-z

Keywords

Navigation