Skip to main content
Log in

Colorimetric Sensing Films of Visible-Light Curable Furfuryl Gelatin for Visual Monitoring of Chicken Freshness

  • RESEARCH
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

In this study, colorimetric films were developed based on the photooxidation of furfuryl gelatin (f-gelatin) mediated by singlet oxygen generated from grape anthocyanins under visible light irradiation. The successful conjugation of gelatin with furfuryl groups was confirmed using ninhydrin assay, 1H-NMR, ATR-FTIR, and TGA analyses. The photosensitizing capacity of grape anthocyanins was illustrated using singlet oxygen-induced rubrene oxidation under visible light. The effect of the furfuryl group and the concentration of grape anthocyanins (1% and 2% w/v) on the mechanical, barrier, structural, thermal stability, and morphological properties of films were investigated. Mechanical, barrier, and thermal properties of f-gelatin films were improved while a rougher cross-sectional morphology was observed after the incorporation of grape anthocyanins. Ammonia vapor sensitivity of f-gelatin films increased with anthocyanins concentration. The freshness of skinless chicken breast samples was monitored with F1A2 films, which had the best ammonia sensitivity and physicochemical properties among the tested films. The change of color and thereby, variations in ΔE and a* values of F1A2 films agreed well with TVB-N release and microbial growth in chicken samples during 9 days of storage at 4 °C. Overall, the successful use of anthocyanins both as a visible light photosensitizer and a colorimetric freshness indicator was demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article and comply with research standards.

References

  • Abdollahi Baghban, S., Ebrahimi, M., Bagheri-Khoulenjani, S., & Khorasani, M. (2021). A highly efficient microwave-assisted synthesis of an LED-curable methacrylated gelatin for bio applications. RSC Advances, 11(25). https://doi.org/10.1039/d1ra01269j

  • Alakhras, F., & Holze, R. (2007). In situ UV-vis-and FT-IR-spectroscopy of electrochemically synthesized furan-thiophene copolymers. Synthetic Metals, 157(2–3). https://doi.org/10.1016/j.synthmet.2006.12.011

  • Al-Hassan, A. A., & Norziah, M. H. (2012). Starch-gelatin edible films: Water vapor permeability and mechanical properties as affected by plasticizers. Food Hydrocolloids, 26(1). https://doi.org/10.1016/j.foodhyd.2011.04.015

  • Amjadi, S., Emaminia, S., Nazari, M., Davudian, S. H., Roufegarinejad, L., & Hamishehkar, H. (2019). Application of reinforced ZnO nanoparticle-incorporated gelatin bionanocomposite film with chitosan nanofiber for packaging of chicken fillet and cheese as food models. Food and Bioprocess Technology, 12(7), 1205–1219. https://doi.org/10.1007/s11947-019-02286-y

    Article  CAS  Google Scholar 

  • Amogne, N. Y., Ayele, D. W., & Tsigie, Y. A. (2020). Recent advances in anthocyanin dyes extracted from plants for dye sensitized solar cell. Materials for Renewable and Sustainable Energy, 9(4). https://doi.org/10.1007/s40243-020-00183-5

  • Anil Kumar, S., Alonzo, M., Allen, S. C., Abelseth, L., Thakur, V., Akimoto, J., Ito, Y., Willerth, S. M., Suggs, L., Chattopadhyay, M., & Joddar, B. (2019). A visible light-cross-linkable, fibrin-gelatin-based bioprinted construct with human cardiomyocytes and fibroblasts. ACS Biomaterials Science and Engineering, 5(9). https://doi.org/10.1021/acsbiomaterials.9b00505

  • Antonatou, E., Hoogewijs, K., Kalaitzakis, D., Baudot, A., Vassilikogiannakis, G., & Madder, A. (2016). Singlet oxygen-induced furan oxidation for site-specific and chemoselective peptide ligation. Chemistry - A European Journal, 22(25). https://doi.org/10.1002/chem.201601113

  • ASTM D882–91. (1991). ASTM D882–91: Standard test methods for tensile properties of thin plastic sheeting. Annual book of ASTM.

  • ASTM E96–05. (1995). Standard test methods for water vapor transmission of materials, E 96/E 96M - 05. Book of standards: ASTM International.

  • Baldwin, E. A., Hagenmaier, R. D., & Bai, J. (2011). Edible coatings and films to improve food quality, second edition. In Edible coatings and films to improve food quality (2nd ed.). 

  • Bigi, A., Cojazzi, G., Panzavolta, S., Rubini, K., & Roveri, N. (2001). Mechanical and thermal properties of gelatin films at different degrees of glutaraldehyde crosslinking. Biomaterials, 22(8). https://doi.org/10.1016/S0142-9612(00)00236-2

  • Cao, N., Fu, Y., & He, J. (2007). Mechanical properties of gelatin films cross-linked, respectively, by ferulic acid and tannin acid. Food Hydrocolloids, 21(4). https://doi.org/10.1016/j.foodhyd.2006.07.001

  • Cavalcanti, R. N., Santos, D. T., & Meireles, M. A. A. (2011). Non-thermal stabilization mechanisms of anthocyanins in model and food systems—An overview. Food Research International, 44(2). https://doi.org/10.1016/j.foodres.2010.12.007

  • Chen, H. Z., Zhang, M., Bhandari, B., & Yang, C. H. (2019). Development of a novel colorimetric food package label for monitoring lean pork freshness. LWT, 99. https://doi.org/10.1016/j.lwt.2018.09.048

  • Chien, C. Y., & Hsu, B. D. (2013). Optimization of the dye-sensitized solar cell with anthocyanin as photosensitizer. Solar Energy, 98. https://doi.org/10.1016/j.solener.2013.09.035

  • Choi, I., Lee, J. Y., Lacroix, M., & Han, J. (2017). Intelligent pH indicator film composed of agar/potato starch and anthocyanin extracts from purple sweet potato. Food Chemistry, 218. https://doi.org/10.1016/j.foodchem.2016.09.050

  • Deng, L., Li, X., Miao, K., Mao, X., Han, M., Li, D., Mu, C., & Ge, L. (2020). Development of disulfide bond crosslinked gelatin/ε-polylysine active edible film with antibacterial and antioxidant activities. Food and Bioprocess Technology, 13(4). https://doi.org/10.1007/s11947-020-02420-1

  • Díaz-Uribe, C., Rodriguez-Serrano, A., López, M., Schott, E., Muñoz, A., & Zarate, X. (2019). Singlet oxygen photogeneration by ethanolic extract of Syzygium cumini fruits: Theoretical elucidation through excited states computations. Chemical Physics Letters, 715. https://doi.org/10.1016/j.cplett.2018.11.016

  • EU Commission. (2007). Commission regulation (EC) No 1441/2007 of 5 December 2007 amending Regulation (EC) No 2073/2005 on microbiological criteria for foodstuffs. Official Journal of the European Union, 322(1441).

  • Ezati, P., Tajik, H., & Moradi, M. (2019). Fabrication and characterization of alizarin colorimetric indicator based on cellulose-chitosan to monitor the freshness of minced beef. Sensors and Actuators B: Chemical, 285. https://doi.org/10.1016/j.snb.2019.01.089

  • Fakhreddin Hosseini, S., Rezaei, M., Zandi, M., & Ghavi, F. F. (2013). Preparation and functional properties of fish gelatin-chitosan blend edible films. Food Chemistry, 136(3–4). https://doi.org/10.1016/j.foodchem.2012.09.081

  • Ge, L., Zhu, M., Xu, Y., Li, X., Li, D., & Mu, C. (2017). Development of antimicrobial and controlled biodegradable gelatin-based edible films containing nisin and amino-functionalized montmorillonite. Food and Bioprocess Technology, 10(9). https://doi.org/10.1007/s11947-017-1941-0

  • Gokilamani, N., Muthukumarasamy, N., Thambidurai, M., Ranjitha, A., & Velauthapillai, D. (2013). Utilization of natural anthocyanin pigments as photosensitizers for dye-sensitized solar cells. Journal of Sol-Gel Science and Technology, 66(2). https://doi.org/10.1007/s10971-013-2994-9

  • Gontard, N., Duchez, C., Cuq, J., & Guilbert, S. (1994). Edible composite films of wheat gluten and lipids: Water vapour permeability and other physical properties. International Journal of Food Science & Technology, 29(1). https://doi.org/10.1111/j.1365-2621.1994.tb02045.x

  • Guo, J., Ge, L., Li, X., Mu, C., & Li, D. (2014). Periodate oxidation of xanthan gum and its crosslinking effects on gelatin-based edible films. Food Hydrocolloids, 39. https://doi.org/10.1016/j.foodhyd.2014.01.026

  • Hong, B. M., Kim, H. C., Jeong, J. E., Park, S. A., & Park, W. H. (2020). Visible-light-induced hyaluronate hydrogel for soft tissue fillers. International Journal of Biological Macromolecules, 165. https://doi.org/10.1016/j.ijbiomac.2020.10.155

  • Huang, L., Zhao, J., Chen, Q., & Zhang, Y. (2014). Nondestructive measurement of total volatile basic nitrogen (TVB-N) in pork meat by integrating near infrared spectroscopy, computer vision and electronic nose techniques. Food Chemistry, 145. https://doi.org/10.1016/j.foodchem.2013.06.073

  • Huang, X., Zhang, Y., Li, F., Zhang, J., Dai, Y., Shi, M., & Zhao, Y. (2020). Highly efficient alginate-based macromolecular photoinitiator for crosslinking and toughening gelatin hydrogels. Journal of Polymer Science, 58(10). https://doi.org/10.1002/pol.20200138

  • Jayachandran, B., Parvin, T. N., Alam, M. M., Chanda, K., & Mm, B. (2022). Insights on chemical crosslinking strategies for proteins. Molecules, 27(23). https://doi.org/10.3390/molecules27238124

  • Jiang, G., Hou, X., Zeng, X., Zhang, C., Wu, H., Shen, G., Li, S., Luo, Q., Li, M., Liu, X., Chen, A., Wang, Z., & Zhang, Z. (2020). Preparation and characterization of indicator films from carboxymethyl-cellulose/starch and purple sweet potato (Ipomoea batatas (L.) lam) anthocyanins for monitoring fish freshness. International Journal of Biological Macromolecules, 143. https://doi.org/10.1016/j.ijbiomac.2019.12.024

  • Kilic, B., Dogan, V., Kilic, V., & Kahyaoglu, L. N. (2022). Colorimetric food spoilage monitoring with carbon dot and UV light reinforced fish gelatin films using a smartphone application. International Journal of Biological Macromolecules, 209, 1562–1572. https://doi.org/10.1016/j.ijbiomac.2022.04.119

  • Kim, E. H., Kim, J. W., Han, G. D., Noh, S. H., Choi, J. H., Choi, C. S., Kim, M. K., Nah, J. W., Kim, T. Y., Ito, Y., & Son, T. I. (2018). Biocompatible, drug-loaded anti-adhesion barrier using visible-light curable furfuryl gelatin derivative. International Journal of Biological Macromolecules, 120. https://doi.org/10.1016/j.ijbiomac.2018.07.180

  • Kim, J. I., Lee, J. H., Choi, D. S., Won, B. M., Jung, M. Y., & Park, J. (2009). Kinetic study of the quenching reaction of singlet oxygen by common synthetic antioxidants (tert-butylhydroxyanisol, tert-di-butylhydroxytoluene, and tert-butylhydroquinone) as compared with α-tocopherol. Journal of Food Science, 74(5). https://doi.org/10.1111/j.1750-3841.2009.01160.x

  • Kishan, A. P., Nezarati, R. M., Radzicki, C. M., Renfro, A. L., Robinson, J. L., Whitely, M. E., & Cosgriff-Hernandez, E. M. (2015). In situ crosslinking of electrospun gelatin for improved fiber morphology retention and tunable degradation. Journal of Materials Chemistry B, 3(40). https://doi.org/10.1039/c5tb00937e

  • Kong, M. S., Koh, W. G., & Lee, H. J. (2022). Controlled release of epidermal growth factor from furfuryl-gelatin hydrogel using in situ visible light-induced crosslinking and its effects on fibroblasts proliferation and migration. Gels, 8(4), 214. https://doi.org/10.3390/gels8040214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuehni, R. G., & Marcus, R. T. (1979). An experiment in visual scaling of small color differences. Color Research & Application, 4(2). https://doi.org/10.1111/j.1520-6378.1979.tb00094.x

  • Kuswandi, B., Jayus, Larasati, T. S., Abdullah, A., & Heng, L. Y. (2012). Real-time monitoring of shrimp spoilage using on-package sticker sensor based on natural dye of curcumin. Food Analytical Methods, 5(4). https://doi.org/10.1007/s12161-011-9326-x

  • Lim, K. S., Klotz, B. J., Lindberg, G. C. J., Melchels, F. P. W., Hooper, G. J., Malda, J., Gawlitta, D., & Woodfield, T. B. F. (2019). Visible light cross-linking of gelatin hydrogels offers an enhanced cell microenvironment with improved light penetration depth. Macromolecular Bioscience, 19(6). https://doi.org/10.1002/mabi.201900098

  • Limpisophon, K., & Schleining, G. (2017). Use of gallic acid to enhance the antioxidant and mechanical properties of active fish gelatin film. Journal of Food Science, 82(1). https://doi.org/10.1111/1750-3841.13578

  • Lin, J., Pan, D., Sun, Y., Ou, C., Wang, Y., & Cao, J. (2019). The modification of gelatin films: Based on various cross-linking mechanism of glutaraldehyde at acidic and alkaline conditions. Food Science and Nutrition, 7(12). https://doi.org/10.1002/fsn3.1282

  • Liu, F., Antoniou, J., Li, Y., Ma, J., & Zhong, F. (2015). Effect of sodium acetate and drying temperature on physicochemical and thermomechanical properties of gelatin films. Food Hydrocolloids, 45. https://doi.org/10.1016/j.foodhyd.2014.10.009

  • Liu, F., Chiou, B. S., Avena-Bustillos, R. J., Zhang, Y., Li, Y., McHugh, T. H., & Zhong, F. (2017). Study of combined effects of glycerol and transglutaminase on properties of gelatin films. Food Hydrocolloids, 65. https://doi.org/10.1016/j.foodhyd.2016.10.004

  • Liu, F., Majeed, H., Antoniou, J., Li, Y., Ma, Y., Yokoyama, W., Ma, J., & Zhong, F. (2016). Tailoring physical properties of transglutaminase-modified gelatin films by varying drying temperature. Food Hydrocolloids, 58. https://doi.org/10.1016/j.foodhyd.2016.01.026

  • Lu, Y., Luo, Q., Chu, Y., Tao, N., Deng, S., Wang, L., & Li, L. (2022). Application of gelatin in food packaging: A review. Polymers, 14(3). https://doi.org/10.3390/polym14030436

  • Luo, Q., Hossen, M. A., Zeng, Y., Dai, J., Li, S., Qin, W., & Liu, Y. (2022). Gelatin-based composite films and their application in food packaging: A review. Journal of Food Engineering, 313. https://doi.org/10.1016/j.jfoodeng.2021.110762

  • Ma, Q., & Wang, L. (2016). Preparation of a visual pH-sensing film based on tara gum incorporating cellulose and extracts from grape skins. Sensors and Actuators B: Chemical, 235. https://doi.org/10.1016/j.snb.2016.05.107

  • Ma, Z., Chen, P., Cheng, W., Yan, K., Pan, L., Shi, Y., & Yu, G. (2018). Highly sensitive, printable nanostructured conductive polymer wireless sensor for food spoilage detection. Nano Letters, 18(7). https://doi.org/10.1021/acs.nanolett.8b01825

  • Maroufi, L. Y., Shahabi, N., Ghanbarzadeh, M. D., & Ghorbani, M. (2022). Development of antimicrobial active food packaging film based on gelatin/dialdehyde quince seed gum incorporated with apple peel polyphenols. Food and Bioprocess Technology, 15(3). https://doi.org/10.1007/s11947-022-02774-8

  • Martucci, J. F., Espinosa, J. P., & Ruseckaite, R. A. (2015). Physicochemical properties of films based on bovine gelatin cross-linked with 1, 4-butanediol diglycidyl ether. Food and Bioprocess Technology, 8, 1645–1656. https://doi.org/10.1007/s11947-015-1524-x

  • Mazaki, T., Shiozaki, Y., Yamane, K., Yoshida, A., Nakamura, M., Yoshida, Y., Zhou, D., Kitajima, T., Tanaka, M., Ito, Y., Ozaki, T., & Matsukawa, A. (2014). A novel, visible light-induced, rapidly cross-linkable gelatin scaffold for osteochondral tissue engineering. Scientific Reports, 4. https://doi.org/10.1038/srep04457

  • Mazza, G. (1995). Anthocyanins in grapes and grape products. Critical Reviews in Food Science and Nutrition, 35(4). https://doi.org/10.1080/10408399509527704

  • Mchugh, T. H., Avena-Bustillos, R., & Krochta, J. M. (1993). Hydrophilic edible films: Modified procedure for water vapor permeability and explanation of thickness effects. Journal of Food Science, 58(4). https://doi.org/10.1111/j.1365-2621.1993.tb09387.x

  • Mohajer, S., Rezaei, M., & Hosseini, S. F. (2017). Physico-chemical and microstructural properties of fish gelatin/agar bio-based blend films. Carbohydrate Polymers, 157. https://doi.org/10.1016/j.carbpol.2016.10.061

  • Montiel-Herrera, M., Gandini, A., Goycoolea, F. M., Jacobsen, N. E., Lizardi-Mendoza, J., Recillas-Mota, M., & Argüelles-Monal, W. M. (2015). N-(furfural) chitosan hydrogels based on Diels-Alder cycloadditions and application as microspheres for controlled drug release. Carbohydrate Polymers, 128. https://doi.org/10.1016/j.carbpol.2015.03.052

  • Moradi, M., Tajik, H., Almasi, H., Forough, M., & Ezati, P. (2019). A novel pH-sensing indicator based on bacterial cellulose nanofibers and black carrot anthocyanins for monitoring fish freshness. Carbohydrate Polymers, 222. https://doi.org/10.1016/j.carbpol.2019.115030

  • Mousavi Khaneghah, A., Hashemi, S. M. B., & Limbo, S. (2018). Antimicrobial agents and packaging systems in antimicrobial active food packaging: An overview of approaches and interactions. Food and Bioproducts Processing, 111. https://doi.org/10.1016/j.fbp.2018.05.001

  • Naghdi, S., Rezaei, M., & Abdollahi, M. (2021). A starch-based pH-sensing and ammonia detector film containing betacyanin of paperflower for application in intelligent packaging of fish. International Journal of Biological Macromolecules, 191. https://doi.org/10.1016/j.ijbiomac.2021.09.045

  • Nagiah, N., El Khoury, R., Othman, M. H., Akimoto, J., Ito, Y., Roberson, D. A., & Joddar, B. (2022). Development and characterization of furfuryl-gelatin electrospun scaffolds for cardiac tissue engineering. ACS Omega, 7(16), 13894–13905. https://doi.org/10.1021/acsomega.2c00271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nardello, V., Marti, M. J., Pierlot, C., & Aubry, J. M. (1999). Photochemistry without light: Oxidation of rubrene in a microemulsion with a chemical source of singlet molecular oxygen (1O2, 1Δ9). Journal of Chemical Education, 76(9). https://doi.org/10.1021/ed076p1285

  • Op De Beeck, M., & Madder, A. (2012). Sequence specific DNA cross-linking triggered by visible light. Journal of the American Chemical Society, 134(26). https://doi.org/10.1021/ja301901p

  • Park, S. H., Seo, S. Y., Lee, H. J., Na, H. N., Lee, J. W., Woo, H. D., & Son, T. I. (2012). Preparation of furfuryl-fish gelatin (F-f.gel) cured using visible-light and its application as an anti-adhesion agent. Macromolecular Research, 20(8). https://doi.org/10.1007/s13233-012-0128-9

  • Rhim, J. W., Park, H. M., & Ha, C. S. (2013). Bio-nanocomposites for food packaging applications. Progress in Polymer Science, 38(10–11), 1629–1652. https://doi.org/10.1016/J.PROGPOLYMSCI.2013.05.008

    Article  CAS  Google Scholar 

  • Rhim, J. W., Wang, L. F., Lee, Y., & Hong, S. I. (2014). Preparation and characterization of bio-nanocomposite films of agar and silver nanoparticles: Laser ablation method. Carbohydrate Polymers, 103(1). https://doi.org/10.1016/j.carbpol.2013.12.075

  • Sahraee, S., Ghanbarzadeh, B., Milani, J. M., & Hamishehkar, H. (2017). Development of gelatin bionanocomposite films containing chitin and ZnO nanoparticles. Food and Bioprocess Technology, 10(8). https://doi.org/10.1007/s11947-017-1907-2

  • San Esteban, A. C. M., & Enriquez, E. P. (2013). Graphene-anthocyanin mixture as photosensitizer for dye-sensitized solar cell. Solar Energy, 98. https://doi.org/10.1016/j.solener.2013.09.036

  • Shankar, S., Teng, X., Li, G., & Rhim, J. W. (2015). Preparation, characterization, and antimicrobial activity of gelatin/ZnO nanocomposite films. Food Hydrocolloids, 45. https://doi.org/10.1016/j.foodhyd.2014.12.001

  • Shirahama, H., Lee, B. H., Tan, L. P., & Cho, N. J. (2016). Precise tuning of facile one-pot gelatin methacryloyl (GelMA) synthesis. Scientific Reports, 6. https://doi.org/10.1038/srep31036

  • Son, T. I, Sakuragi, M., Takahashi, S., Obuse, S., Kang, J., Fujishiro, M., Matsushita, H., Gong, J., Shimizu, S., Tajima, Y., Yoshida, Y., Suzuki, K., Yamamoto, T., Nakamura, M., & Ito, Y. (2010). Visible light-induced crosslinkable gelatin. Acta Biomaterialia, 6(10). https://doi.org/10.1016/j.actbio.2010.05.018

  • Taghizadeh, M., Aryan, S., Rouhi, M., Sobhiyeh, M. R., Askari, F., Gholipourmalekabadi, M., Sohrabvandi, S., Khajavi, M. Z., Davachi, S. M., Abbaspourrad, A., Mohammadi, R., & Mortazavian, A. M. (2020). Photo-crosslinked gelatin–polyvinyl alcohol composite films: UV–riboflavin treatment for improving functional properties. Journal of Food Processing and Preservation, 44(7). https://doi.org/10.1111/jfpp.14550

  • Taherkhani, E., Moradi, M., Tajik, H., Molaei, R., & Ezati, P. (2020). Preparation of on-package halochromic freshness/spoilage nanocellulose label for the visual shelf life estimation of meat. International Journal of Biological Macromolecules, 164. https://doi.org/10.1016/j.ijbiomac.2020.08.177

  • Wang, K., Wang, W., Wu, X., Xiao, J., Liu, Y., & Liu, A. (2017). Effect of photochemical UV/riboflavin-mediated cross-links on different properties of fish gelatin films. Journal of Food Process Engineering, 40(5). https://doi.org/10.1111/jfpe.12536

  • Yavari Maroufi, L., Ghorbani, M., & Tabibiazar, M. (2020). A gelatin-based film reinforced by covalent interaction with oxidized guar gum containing green tea extract as an active food packaging system. Food and Bioprocess Technology, 13(9). https://doi.org/10.1007/s11947-020-02509-7

  • Yuan, Y., Xue, Q., Guo, Q., Wang, G., Yan, S., Wu, Y., Li, L., Zhang, X., & Li, B. (2021). The covalent crosslinking of dialdehyde glucomannan and the inclusion of tannic acid synergistically improved physicochemical and functional properties of gelatin films. Food Packaging and Shelf Life, 30. https://doi.org/10.1016/j.fpsl.2021.100747

  • Zatorski, J. M., Montalbine, A. N., Ortiz-Cárdenas, J. E., & Pompano, R. R. (2020). Quantification of fractional and absolute functionalization of gelatin hydrogels by optimized ninhydrin assay and 1H NMR. Analytical and Bioanalytical Chemistry, 412(24). https://doi.org/10.1007/s00216-020-02792-5

  • Zhang, Y., Fu, Y., Zhou, S., Kang, L., & Li, C. (2013). A straightforward ninhydrin-based method for collagenase activity and inhibitor screening of collagenase using spectrophotometry. Analytical Biochemistry, 437(1). https://doi.org/10.1016/j.ab.2013.02.030

  • Zhong, S., & Yung, L. Y. L. (2009). Enhanced biological stability of collagen with incorporation of PAMAM dendrimer. Journal of Biomedical Materials Research - Part A, 91(1). https://doi.org/10.1002/jbm.a.32188

Download references

Funding

This study was supported by METU BAP, Scientific Research Project Coordination Office (No: AGEP-314–2019-10101).

Author information

Authors and Affiliations

Authors

Contributions

Idil Kit: conceptualization, methodology, investigation, writing. Leyla Nesrin Kahyaoglu: conceptualization, supervision, writing, review and editing, financial acquisition.

Corresponding author

Correspondence to Leyla Nesrin Kahyaoglu.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 38083 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kit, I., Kahyaoglu, L.N. Colorimetric Sensing Films of Visible-Light Curable Furfuryl Gelatin for Visual Monitoring of Chicken Freshness. Food Bioprocess Technol 17, 528–543 (2024). https://doi.org/10.1007/s11947-023-03152-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-023-03152-8

Keywords

Navigation