Skip to main content
Log in

An Overview of the Isolation, Modification, Physicochemical Properties, and Applications of Sweet Potato Starch

  • REVIEW
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Sweet potato is a dicotyledonous plant that originated in Latin America and is an old and essential food crop in many countries. Sweet potato roots have different levels of digestible starch according to their tuber type, which typically ranges from 50 to 80%. However, the quality of the separation procedure and that of the final product often differ depending on the starch separateness parameters and other factors such as post-harvest storage, root types, and solvent of extraction. Sweet potato starch (SPS) has various size fractions, a CA-type crystalline structure, and no discernible variations in its thermal characteristics, as well as significant positive correlations between the consistency coefficient, setback, breakdown, resistant starch content, and granule size. Furthermore, SPS exhibits unique physicochemical properties and highly appreciated functional characteristics. SPS may be modified in a variety of ways, including biologically, physically, chemically, and enzymatically, which would make it better suited for usage in conventional food items that often employ starch, where SPS is a significant source of prospects for the food and beverage sector in addition to other industrial uses. However, SPS is among the most promising carbohydrates for use in many areas, which should be focused on more comprehensively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets generated during the current study are available from the corresponding author upon reasonable request.

References

  • Abegunde, O. K., Mu, T. -H., Chen, J. -W., & Deng, F. -M. (2013). Physicochemical characterization of sweet potato starches popularly used in Chinese starch industry. Food Hydrocolloids, 33(2), 169–177.

    Article  CAS  Google Scholar 

  • Aboyeji, O., Oloke, J., Arinkoola, A., Oke, M., & Ishola, M. (2020). Optimization of media components and fermentation conditions for citric acid production from sweet potato peel starch hydrolysate by Aspergillus niger. Scientific African, 10, e00554.

    Article  Google Scholar 

  • Ahmad, M., Rukhsaar, S., Gani, A., Ashwar, B. A., Wani, T. A., Shah, U., & Jhan, F. (2021). Recent advances in the application of starch and resistant starch and slowly digestible starch. Food biopolymers: Structural, functional and nutraceutical properties (pp. 59–90). Cham: Springer.

    Google Scholar 

  • Aina, A. J., Falade, K. O., Akingbala, J. O., & Titus, P. (2012). Physicochemical properties of Caribbean sweet potato (Ipomoea batatas (L) Lam) starches. Food and Bioprocess Technology, 5(2), 576–583.

    Article  CAS  Google Scholar 

  • Alcázar-Alay, S. C., & Meireles, M. A. A. (2015). Physicochemical properties, modifications and applications of starches from different botanical sources. Food Science and Technology, 35, 215–236.

    Article  Google Scholar 

  • Arp, C. G., Correa, M. J., & Ferrero, C. (2020). Production and characterization of type III resistant starch from native wheat starch using thermal and enzymatic modifications. Food and Bioprocess Technology, 13, 1181–1192.

    Article  CAS  Google Scholar 

  • Ashogbon, A. O., & Akintayo, E. T. (2014). Recent trend in the physical and chemical modification of starches from different botanical sources: a review. Starch-Stärke, 66(1–2), 41–57.

    Article  CAS  Google Scholar 

  • Assefa, A., Belete, A., & Gebre-Mariam, T. (2016). Physicochemical characterization of starch isolated from ethiopian potato (plectranthus edulis). SINET: Ethiopian Journal of Science., 39(1), 11–20.

    Google Scholar 

  • Astuti, R. M., Asiah, N., Setyowati, A., & Fitriawati, R. (2018). Effect of physical modification on granule morphology, pasting behavior, and functional properties of arrowroot (Marantha arundinacea L) starch. Food Hydrocolloids, 81, 23–30.

    Article  CAS  Google Scholar 

  • Awol, A. M., Waghray, K., Prabhakar, R. P., & G Rudrayya, M. (2020). Characterizing physicochemical properties of enset starch. Journal of Textiles and Polymers, 8(1), 43–52.

    Google Scholar 

  • Azhar, M. D., Abd Hashib, S., Ibrahim, U. K., & Abd Rahman, N. (2021). Development of carrier material for food applications in spray drying technology: an overview. Materials Today: Proceedings, 47, 1371–1375.

    CAS  Google Scholar 

  • Babu, A. S., & Parimalavalli, R. (2018). Effect of pullulanase debranching and storage temperatures on structural characteristics and digestibility of sweet potato starch. Journal of the Saudi Society of Agricultural Sciences, 17(2), 208–216.

    Article  Google Scholar 

  • Babu, A. S., Parimalavalli, R., & Rudra, S. G. (2015). Effect of citric acid concentration and hydrolysis time on physicochemical properties of sweet potato starches. International Journal of Biological Macromolecules, 80, 557–565.

    Article  Google Scholar 

  • Bach, D., Bedin, A. C., Lacerda, L. G., Nogueira, A., & Demiate, I. M. (2021). Sweet potato (Ipomoea batatas L.): a versatile raw material for the food industry. Brazilian Archives of Biology and Technology, 64, e21200568.

    Article  CAS  Google Scholar 

  • Bae, I. Y., & Lee, H. G. (2018). Effect of dry heat treatment on physical property and in vitro starch digestibility of high amylose rice starch. International Journal of Biological Macromolecules, 108, 568–575.

    Article  PubMed  Google Scholar 

  • Batista, R. D., Mendes, Dd. C. S., Morais, C. C., Thomaz, D. V., Ascheri, D. P. R., Damiani, C., & Asquieri, E. R. (2020). Physicochemical, functional and rheological properties of fermented and non-fermented starch from canary seed (Phalaris canariensis). Food Hydrocolloids, 99, 105346.

    Article  CAS  Google Scholar 

  • Cai, J., Chao, C., Niu, B., Copeland, L., Yu, J., Wang, S., & Wang, S. (2021). New insight into the interactions among starch, lipid and protein in model systems with different starches. Food Hydrocolloids, 112, 106323.

    Article  CAS  Google Scholar 

  • Chakraborty, I., Mal, S. S., Paul, U. C., Rahman, M. H., & Mazumder, N. (2022). An insight into the gelatinization properties influencing the modified starches used in food industry: a review. Food and Bioprocess Technology, 15(6), 1195–1223.

    Article  CAS  Google Scholar 

  • Chen, Q., Yu, H., Wang, L., ul Abdin, Z., Chen, Y., Wang, J., Zhou, W., Yang, X., Khan, R. U., & Zhang, H. (2015). Recent progress in chemical modification of starch and its applications. Rsc Advances, 5(83), 67459–67474.

    Article  CAS  Google Scholar 

  • Chung, H. -J., Hoover, R., & Liu, Q. (2009). The impact of single and dual hydrothermal modifications on the molecular structure and physicochemical properties of normal corn starch. International Journal of Biological Macromolecules, 44(2), 203–210.

    Article  CAS  PubMed  Google Scholar 

  • Cornejo, F., Salazar, R., Martínez-Espinosa, R., Villacrés, E., Paredes-Escobar, M., Ruales, J., & Penafiel, D. (2022). Evaluation of starch digestibility of Andean crops oriented to healthy diet recommendation. International Journal of Food Properties, 25(1), 1146–1155.

    Article  CAS  Google Scholar 

  • Cruz-Tirado, J., Vejarano, R., Tapia-Blácido, D. R., Barraza-Jáuregui, G., & Siche, R. (2019). Biodegradable foam tray based on starches isolated from different Peruvian species. International Journal of Biological Macromolecules, 125, 800–807.

    Article  CAS  PubMed  Google Scholar 

  • Das, A. B., Singh, G., Singh, S., & Riar, C. S. (2010). Effect of acetylation and dual modification on physico-chemical, rheological and morphological characteristics of sweet potato (Ipomoea batatas) starch. Carbohydrate Polymers, 80(3), 725–732.

    Article  CAS  Google Scholar 

  • de Albuquerque, T. M. R., Sampaio, K. B., & de Souza, E. L. (2019). Sweet potato roots: Unrevealing an old food as a source of health promoting bioactive compounds–A review. Trends in Food Science & Technology, 85, 277–286.

    Article  Google Scholar 

  • de Oliveira, C. S., Bet, C. D., Bisinella, R. Z. B., Waiga, L. H., Colman, T. A. D., & Schnitzler, E. (2018). Heat-moisture treatment (HMT) on blends from potato starch (PS) and sweet potato starch (SPS). Journal of Thermal Analysis and Calorimetry, 133(3), 1491–1498.

    Article  Google Scholar 

  • Deng, F. M., Mu, T. H., Zhang, M., & Abegunde, O. K. (2013). Composition, structure, and physicochemical properties of sweet potato starches isolated by sour liquid processing and centrifugation. Starch-Stärke, 65(1–2), 162–171.

    Article  CAS  Google Scholar 

  • Dereje, B. (2021). Composition, morphology and physicochemical properties of starches derived from indigenous Ethiopian tuber crops: a review. International Journal of Biological Macromolecules, 187, 911–921.

    Article  CAS  PubMed  Google Scholar 

  • Di Filippo, S., Tupa, M., Vázquez, A., & Foresti, M. L. (2016). Organocatalytic route for the synthesis of propionylated starch. Carbohydrate Polymers, 137, 198–206.

    Article  PubMed  Google Scholar 

  • Ding, L., Huang, Q., Xiang, W., Fu, X., Zhang, B., & Wu, J. -Y. (2022). Chemical cross-linking reduces in vitro starch digestibility of cooked potato parenchyma cells. Food Hydrocolloids, 124, 107297.

    Article  CAS  Google Scholar 

  • Dong, H., & Vasanthan, T. (2020). Amylase resistance of corn, faba bean, and field pea starches as influenced by three different phosphorylation (cross-linking) techniques. Food Hydrocolloids, 101, 105506.

    Article  CAS  Google Scholar 

  • Dos Santos, C. S., de Medeiros Almeida, M. C. B., Almeida, E. L., & Cavalcanti, M. T. (2019a). Effects of low heat-moisture treatment in prata green banana starch (Musa AAB-Prata). Food and Bioprocess Technology, 12, 1938–1944.

    Article  Google Scholar 

  • Dos Santos, T. P. R., Franco, C. M. L., do Carmo, E. L., Jane, J. -I., & Leonel, M. (2019b). Effect of spray-drying and extrusion on physicochemical characteristics of sweet potato starch. Journal of Food Science and Technology, 56(1), 376–383.

    Article  PubMed  Google Scholar 

  • Duan, W., Zhang, H., Xie, B., Wang, B., & Zhang, L. (2019). Impacts of nitrogen fertilization rate on the root yield, starch yield and starch physicochemical properties of the sweet potato cultivar Jishu 25. PLoS ONE, 14(8), e0221351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dupuis, J. H., Liu, Q., & Yada, R. Y. (2014). Methodologies for increasing the resistant starch content of food starches: a review. Comprehensive Reviews in Food Science and Food Safety, 13(6), 1219–1234.

    Article  CAS  Google Scholar 

  • Eke-Ejiofor, J. (2015). Physico-chemical and pasting properties of starches from cassava, sweet potato and three leaf yam and their application in salad cream production. International Journal of Biotechnology and Food Science, 3(2), 23–30.

    Google Scholar 

  • Gbadamosi, S. O., Kadiri, O., & Akanbi, C. T. (2021). Quality characteristics of noodles produced from soybean protein concentrate and sweet potato starch: a principal component and polynomial cubic regression model approach. Journal of Culinary Science & Technology, 19(3), 247–267.

    Article  Google Scholar 

  • Goesaert, H., Bijttebier, A., & Delcour, J. A. (2010). Hydrolysis of amylopectin by amylolytic enzymes: level of inner chain attack as an important analytical differentiation criterion. Carbohydrate Research, 345(3), 397–401.

    Article  CAS  PubMed  Google Scholar 

  • Gou, M., Wu, H., Saleh, A. S., Jing, L., Liu, Y., Zhao, K., Su, C., Zhang, B., Jiang, H., & Li, W. (2019). Effects of repeated and continuous dry heat treatments on properties of sweet potato starch. International Journal of Biological Macromolecules, 129, 869–877.

    Article  CAS  PubMed  Google Scholar 

  • Guo, K., Bian, X., Jia, Z., Zhang, L., & Wei, C. (2020a). Effects of nitrogen level on structural and functional properties of starches from different colored-fleshed root tubers of sweet potato. International Journal of Biological Macromolecules, 164, 3235–3242.

    Article  CAS  PubMed  Google Scholar 

  • Guo, K., Lin, L., Li, E., Zhong, Y., Petersen, B. L., Blennow, A., Bian, X., & Wei, C. (2022). Effects of growth temperature on multi-scale structure of root tuber starch in sweet potato. Carbohydrate Polymers, 298, 120136.

    Article  CAS  PubMed  Google Scholar 

  • Guo, K., Liu, T., Xu, A., Zhang, L., Bian, X., & Wei, C. (2019a). Structural and functional properties of starches from root tubers of white, yellow, and purple sweet potatoes. Food Hydrocolloids, 89, 829–836.

    Article  CAS  Google Scholar 

  • Guo, K., Zhang, L., Bian, X., Cao, Q., & Wei, C. (2020b). A-, B-and C-type starch granules coexist in root tuber of sweet potato. Food Hydrocolloids, 98, 105279.

    Article  CAS  Google Scholar 

  • Guo, L., Tao, H., Cui, B., & Janaswamy, S. (2019b). The effects of sequential enzyme modifications on structural and physicochemical properties of sweet potato starch granules. Food Chemistry, 277, 504–514.

    Article  CAS  PubMed  Google Scholar 

  • Henrissat, B., Sulzenbacher, G., & Bourne, Y. (2008). Glycosyltransferases, glycoside hydrolases: surprise, surprise! Current Opinion in Structural Biology, 18(5), 527–533.

    Article  CAS  PubMed  Google Scholar 

  • Hong, L. -F., Cheng, L. -H., Gan, C. -Y., Lee, C. Y., & Peh, K. K. (2018). Evaluation of starch propionate as emulsion stabiliser in comparison with octenylsuccinate starch. LWT, 91, 526–531.

    Article  CAS  Google Scholar 

  • Hussain, S., Mohamed, A. A., Alamri, M. S., Ibraheem, M. A., Qasem, A. A. A., Alsulami, T., & Ababtain, I. A. (2022). Effect of cactus (Opuntia ficus-indica) and acacia (Acacia seyal) gums on the pasting, thermal, textural, and rheological properties of corn, sweet potato, and Turkish bean starches. Molecules, 27(3), 701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imre, B., & Vilaplana, F. (2020). Organocatalytic esterification of corn starches towards enhanced thermal stability and moisture resistance. Green Chemistry, 22(15), 5017–5031.

    Article  CAS  Google Scholar 

  • Jia, R., Katano, T., Yoshimoto, Y., Gao, Y., Watanabe, Y., Nakazawa, N., Osako, K., & Okazaki, E. (2018). Sweet potato starch with low pasting temperature to improve the gelling quality of surimi gels after freezing. Food Hydrocolloids, 81, 467–473.

    Article  CAS  Google Scholar 

  • Kashyap, P., & Jindal, N. (2019). Effect of date syrup on physicochemical, pasting, textural, rheological and morphological properties of sweet potato starch. Journal of Food Measurement and Characterization, 13(3), 2398–2405.

    Article  Google Scholar 

  • Kawai, S., Kobayashi, I., & Goto. M. (2017). Oil–or fat-processed starch and method for producing same (pp. 2014–2003–2027). Google Patents, US2014087052A1.

  • Kim, H. -J., Woo, K. S., Lee, H. -U., Nam, S. S., Lee, B. W., Kim, M. Y., Lee, Y. -Y., Lee, J. Y., Kim, M. H., & Lee, B. (2020). Physicochemical characteristics of starch in sweet potato cultivars grown in Korea. Preventive Nutrition and Food Science, 25(2), 212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, J., Ren, C., & Shin, M. (2013). Physicochemical properties of starch isolated from eight different varieties of Korean sweet potatoes. Starch-Stärke, 65(11–12), 923–930.

    Article  CAS  Google Scholar 

  • Kringel, D. H., El Halal, S. L. M., Zavareze, Ed. R., & Dias, A. R. G. (2020). Methods for the extraction of roots, tubers, pulses, pseudocereals, and other unconventional starches sources: a review. Starch-Stärke, 72(11–12), 1900234.

    Article  CAS  Google Scholar 

  • Kusumaningsih, T., Firdaus, M., & Juneasri, F. T. I. (2022). The physicochemical characterization, gelatinization profile, and proximate analysis of sweet potato starch (Ipomoea batatas L.) white, yellow, and purple. Molekul, 17(2), 176–184.

    Article  CAS  Google Scholar 

  • Laftah, W. A. (2017). Starch based biodegradable blends: a review. International Journal of Engineering Research, 6, 19.

    Google Scholar 

  • Lai, Y. C., Wang, S. Y., Gao, H. Y., Nguyen, K. M., Nguyen, C. H., Shih, M. C., & Lin, K. H. (2016). Physicochemical properties of starches and expression and activity of starch biosynthesis-related genes in sweet potatoes. Food Chemistry, 199, 556–564.

    Article  CAS  PubMed  Google Scholar 

  • Lee, B. H., & Lee, Y. T. (2017). Physicochemical and structural properties of different colored sweet potato starches. Starch-Stärke, 69(3–4), 1600001.

    Article  Google Scholar 

  • Li, H., Gui, Y., Li, J., Zhu, Y., Cui, B., & Guo, L. (2020). Modification of rice starch using a combination of autoclaving and triple enzyme treatment: Structural, physicochemical and digestibility properties. International Journal of Biological Macromolecules, 144, 500–508.

    Article  CAS  PubMed  Google Scholar 

  • Li, L., Liu, Z., Zhang, W., Xue, B., & Luo, Z. (2021). Production and applications of amylose-lipid complexes as resistant starch: recent approaches. Starch-Stärke, 73(5–6), 2000249.

    Article  CAS  Google Scholar 

  • Li, W., Cao, F., Fan, J., Ouyang, S., Luo, Q., Zheng, J., & Zhang, G. (2014). Physically modified common buckwheat starch and their physicochemical and structural properties. Food Hydrocolloids, 40, 237–244.

    Article  CAS  Google Scholar 

  • Li, Y., Liu, S., Liu, X., Tang, X., & Zhang, J. (2017). The impact of heat-moisture treatment on physicochemical properties and retrogradation behavior of sweet potato starch. International Journal of Food Engineering, 13(5), 20170001.

    Article  Google Scholar 

  • Li, Y., Zhang, H., Shoemaker, C. F., Xu, Z., Zhu, S., & Zhong, F. (2013). Effect of dry heat treatment with xanthan on waxy rice starch. Carbohydrate Polymers, 92(2), 1647–1652.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y., Zhao, L., Shi, L., Lin, L., Cao, Q., & Wei, C. (2022). Sizes, components, crystalline structure, and thermal properties of starches from sweet potato varieties originating from different countries. Molecules, 27(6), 1905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, K., Hao, Y., Chen, Y., & Gao, Q. (2019). Effects of dry heat treatment on the structure and physicochemical properties of waxy potato starch. International Journal of Biological Macromolecules, 132, 1044–1050.

    Article  CAS  PubMed  Google Scholar 

  • Liu, W. -C., Halley, P. J., & Gilbert, R. G. (2010). Mechanism of degradation of starch, a highly branched polymer, during extrusion. Macromolecules, 43(6), 2855–2864.

    Article  CAS  Google Scholar 

  • Liu, X., Wang, Y., Yu, L., Tong, Z., Chen, L., Liu, H., & Li, X. (2013). Thermal degradation and stability of starch under different processing conditions. Starch-Stärke, 65(1–2), 48–60.

    Article  CAS  Google Scholar 

  • Lu, P., Li, X., Janaswamy, S., Chi, C., Chen, L., Wu, Y., & Liang, Y. (2020). Insights on the structure and digestibility of sweet potato starch: Effect of postharvest storage of sweet potato roots. International Journal of Biological Macromolecules, 145, 694–700.

    Article  CAS  PubMed  Google Scholar 

  • Lu, Z. -H., Belanger, N., Donner, E., & Liu, Q. (2018). Debranching of pea starch using pullulanase and ultrasonication synergistically to enhance slowly digestible and resistant starch. Food Chemistry, 268, 533–541.

    Article  CAS  PubMed  Google Scholar 

  • Lyu, R., Ahmed, S., Fan, W., Yang, J., Wu, X., Zhou, W., Zhang, P., Yuan, L., & Wang, H. (2021). Engineering properties of sweet potato starch for industrial applications by biotechnological techniques including genome editing. International Journal of Molecular Sciences, 22(17), 9533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma, H., Liu, M., Liang, Y., Zheng, X., Sun, L., Dang, W., Li, J., Li, L., & Liu, C. (2022). Research progress on properties of pre-gelatinized starch and its application in wheat flour products. Grain & Oil Science and Technology, 5(2), 87–97.

    Article  CAS  Google Scholar 

  • Maibam, B. D., Chakraborty, S., Nickhil, C., & Deka, S. C. (2023). Effect of Euryale ferox seed shell extract addition on the in vitro starch digestibility and predicted glycemic index of wheat-based bread. International Journal of Biological Macromolecules, 226, 1066–1078.

    Article  CAS  PubMed  Google Scholar 

  • Mathobo, V. M., Silungwe, H., Ramashia, S. E., & Anyasi, T. A. (2021). Effects of heat-moisture treatment on the thermal, functional properties and composition of cereal, legume and tuber starches–A review. Journal of Food Science and Technology, 58, 412–426.

    Article  CAS  PubMed  Google Scholar 

  • Mehta, D., & Satyanarayana, T. (2016). Bacterial and archaeal α-amylases: diversity and amelioration of the desirable characteristics for industrial applications. Frontiers in Microbiology, 7, 1129.

    Article  PubMed  PubMed Central  Google Scholar 

  • Miao, M., Jiang, B., Jin, Z., & BeMiller, J. N. (2018). Microbial starch-converting enzymes: recent insights and perspectives. Comprehensive Reviews in Food Science and Food Safety, 17(5), 1238–1260.

    Article  CAS  PubMed  Google Scholar 

  • Mohamed, A. A., Alqah, H., Alamri, M. S., Hussain, S., Qasem, A. A., Ibraheem, M. I., Yehia, H. M., & Shamlan, G. (2021). Physicochemical properties of enzymatically modified starches. Processes, 9(12), 2251.

    Article  Google Scholar 

  • Montoya-Yepes, D. F., Jiménez-Rodríguez, A. A., Aldana-Porras, A. E., Velásquez-Holguin, L. F., Méndez-Arteaga, J. J., & Murillo-Arango, W. (2023). Starches in the encapsulation of plant active ingredients: state of the art and research trends. Polymer Bulletin, 1–29.

  • Mu, T. -H., & Zhang, M. (2019). Sweet potato starch. Sweet potato (pp. 27–68). Elsevier.

    Chapter  Google Scholar 

  • Na, J. H., Kim, H. R., Kim, Y., Lee, J. S., Park, H. J., Moon, T. W., & Lee, C. J. (2020). Structural characteristics of low-digestible sweet potato starch prepared by heat-moisture treatment. International Journal of Biological Macromolecules, 151, 1049–1057.

    Article  CAS  PubMed  Google Scholar 

  • Nagar, C. K., Dash, S. K., Rayaguru, K., Pal, U. S., & Nedunchezhiyan, M. (2021). Isolation, characterization, modification and uses of taro starch: a review. International Journal of Biological Macromolecules, 192, 574–589.

    Article  CAS  PubMed  Google Scholar 

  • Namazi, H., Fathi, F., & Dadkhah, A. (2011). Hydrophobically modified starch using long-chain fatty acids for preparation of nanosized starch particles. Scientia Iranica, 18(3), 439–445.

    CAS  Google Scholar 

  • Nandutu, A., & Howell, N. (2009). Nutritional and rheological properties of swet potato based infant food and its preservation using antioxidants. African Journal of Food, Agriculture, Nutrition and Development, 9(4).

  • Narpinder, S., Amritpal, K., Khetan, S., & Rajarathnam, E. (2013). Potato: production, composition and starch processing. Advances in Food Science and Nutrition, 2, 23–48.

    Google Scholar 

  • Nawaz, H., Waheed, R., Nawaz, M., & Shahwar, D. (2020). Physical and chemical modifications in starch structure and reactivity. Chemical Properties of Starch, 9, 13–35.

    Google Scholar 

  • Nielsen, T. S., Bendiks, Z., Thomsen, B., Wright, M. E., Theil, P. K., Scherer, B. L., & Marco, M. L. (2019). High-amylose maize, potato, and butyrylated starch modulate large intestinal fermentation, microbial composition, and oncogenic miRNA expression in rats fed a high-protein meat diet. International Journal of Molecular Sciences, 20(9), 2137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu, L., Ding, H., Hao, R., Liu, H., Wu, X., Hu, X., & Wang, W. (2019). A rapid and universal method for isolating starch granules in plant tissues. Wiley Online Library.

    Book  Google Scholar 

  • Ojogbo, E., Ogunsona, E., & Mekonnen, T. (2020). Chemical and physical modifications of starch for renewable polymeric materials. Materials Today Sustainability, 7, 100028.

    Article  Google Scholar 

  • Oke, M., & Workneh, T. (2019). A review on sweet potato postharvest processing and preservation technology. International Journal of Agricultural Sciences, 9(9), 001–014.

    Google Scholar 

  • Oyom, W., Xu, H., Liu, Z., Long, H., Li, Y., Zhang, Z., Bi, Y., Tahergorabi, R., & Prusky, D. (2022). Effects of modified sweet potato starch edible coating incorporated with cumin essential oil on storage quality of ‘early crisp.’ LWT, 153, 112475.

    Article  CAS  Google Scholar 

  • Öztürk, S., & Köksel, H. (2014). Production and characterisation of resistant starch and its utilisation as food ingredient: a review. Quality Assurance and Safety of Crops & Foods, 6, 335–346.

    Article  Google Scholar 

  • Öztürk, S., & Mutlu, S. (2019). Physicochemical properties, modifications, and applications of resistant starches. Starches for food application (pp. 297–332). Elsevier.

    Chapter  Google Scholar 

  • Paixão e Silva, G. D. L., Bento, J. A. C., Ribeiro, G. O., Lião, L. M., Soares Júnior, M. S., & Caliari, M. (2021a). Application potential and technological properties of colored sweet potato starches. Starch-Stärke, 73(1–2), 2000100.

    Article  Google Scholar 

  • Paixão e Silva, G. D. L., Bento, J. A. C., Soares Júnior, M. S., & Caliari, M. (2021b). Trend of modification by autoclave at low pressure and by natural fermentation in sweet potato and cassava starches. Polysaccharides, 2(2), 354–372.

    Article  Google Scholar 

  • Pham Van Hung, P., Nguyen, N. T. T., & Le, T. K. P. (2019). Content and physicochemical properties of starches from different kinds of sweet potatoes grown in Dong Thap province. Can Tho University Journal of Science, 11(2), 38–43.

    Google Scholar 

  • Pramodrao, K., & Riar, C. (2014). Comparative study of effect of modification with ionic gums and dry heating on the physicochemical characteristic of potato, sweet potato and taro starches. Food Hydrocolloids, 35, 613–619.

    Article  CAS  Google Scholar 

  • Pushpalatha, M., Vaidya, P., & Adsul, P. (2017). Effect of graded levels of nitrogen and potassium on yield and quality of sweet potato (Ipomoea batatas L.). International Journal of Current Microbiology and Applied Sciences, 6(5), 1689–1696.

    Article  CAS  Google Scholar 

  • Qin, W., Wen, C., Zhang, J., Dzah, C. S., Zhang, H., He, Y., & Duan, Y. (2020). Structural characterization and physicochemical properties of arrowhead resistant starch prepared by different methods. International Journal of Biological Macromolecules, 157, 96–105.

    Article  CAS  PubMed  Google Scholar 

  • Reyes, I., Cruz-Sosa, F., Roman-Guerrero, A., Vernon-Carter, E. J., & Alvarez-Ramirez, J. (2016). Structural changes of corn starch during Saccharomyces cerevisiae fermentation. Starch-Stärke, 68(9–10), 961–971.

    Article  CAS  Google Scholar 

  • Sagnelli, D., Hebelstrup, K. H., Leroy, E., Rolland-Sabaté, A., Guilois, S., Kirkensgaard, J. J., Mortensen, K., Lourdin, D., & Blennow, A. (2016). Plant-crafted starches for bioplastics production. Carbohydrate Polymers, 152, 398–408.

    Article  CAS  PubMed  Google Scholar 

  • Sajeev, M., Sreekumar, J., Vimala, B., Moorthy, S., & Jyothi, A. (2012). Textural and gelatinization characteristics of white, cream, and orange fleshed sweet potato tubers (Ipomoea Batatas L.). International Journal of Food Properties, 15(4), 912–931.

    Article  CAS  Google Scholar 

  • Senanayake, S., Gunaratne, A., Ranaweera, K., & Bamunuarachchi, A. (2013). Physico-chemical properties of five cultivars of sweet potato (Ipomea batatas Lam (L)) root tubers grown in Sri Lanka. Tropical Agriculture, 90(2), 87–96.

    Google Scholar 

  • Shahzad, S. A., Hussain, S., Alamri, M. S., Mohamed, A. A., Ahmed, A. S., Ibraheem, M. A., & Abdo Qasem, A. A. (2019). Use of hydrocolloid gums to modify the pasting, thermal, rheological, and textural properties of sweet potato starch. International Journal of Polymer Science, 2019, 6308591.

    Article  Google Scholar 

  • Shamsudin, I., Anuar, M., & Tahir, S. (2012). Compaction of sweet potato (Ipomoea Batatas L.) and stevia rebaudiana food powders. Particulate Science and Technology, 30(2), 136–144.

    Article  CAS  Google Scholar 

  • Sharma, H. K., Njintang, N. Y., Singhal, R. S., & Kaushal, P. (2016). Tropical roots and tubers: production, processing and technology. John Wiley & Sons.

    Book  Google Scholar 

  • Shen, H., Yu, J., Bai, J., Liu, Y., Ge, X., Li, W., & Zheng, J. (2023). A new pre-gelatinized starch preparing by spray drying and electron beam irradiation of oat starch. Food Chemistry, 398, 133938.

    Article  CAS  PubMed  Google Scholar 

  • Shi, L., Li, Y., Lin, L., Bian, X., & Wei, C. (2021). Effects of variety and growing location on physicochemical properties of starch from sweet potato root tuber. Molecules, 26(23), 7137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Souza, A. G. D., Viana, D. J. S., Santos, A. S. D., Andrade Júnior, V. C. D., & Rosa, D. D. S. (2020). Structure and properties of starch and flour of four Brazilian sweet potatoes (Ipomoea batatas) cultivars. Matéria (Rio de Janeiro), 25, e12828.

    Article  Google Scholar 

  • Srichuwong, S., Orikasa, T., Matsuki, J., Shiina, T., Kobayashi, T., & Tokuyasu, K. (2012). Sweet potato having a low temperature-gelatinizing starch as a promising feedstock for bioethanol production. Biomass and Bioenergy, 39, 120–127.

    Article  CAS  Google Scholar 

  • Sun, H., Fan, J., Tian, Z., Ma, L., Meng, Y., Yang, Z., Zeng, X., Liu, X., Kang, L., & Nan, X. (2022). Effects of treatment methods on the formation of resistant starch in purple sweet potato. Food Chemistry, 367, 130580.

    Article  CAS  PubMed  Google Scholar 

  • Tong, C., Ru, W., Wu, L., Wu, W., & Bao, J. (2020). Fine structure and relationships with functional properties of pigmented sweet potato starches. Food Chemistry, 311, 126011.

    Article  CAS  PubMed  Google Scholar 

  • Tun, T. Y., & Mar, A. A. (2020). Preparation and characterization of biodegradable plastic film from starch enriched tubers. MERAL Portal, JRI.

    Google Scholar 

  • Ulfa, G., Putri, W., Fibrianto, K., & Widjanarko, S. (2021). The potentials of Indonesian tubers for the development of potato starch substitute: a short review. IOP Conference Series: Earth and Environmental Science (Vol. 1, p. 012098). IOP Publishing.

    Google Scholar 

  • Vamadevan, V., & Bertoft, E. (2015). Structure-function relationships of starch components. Starch-Stärke, 67(1–2), 55–68.

    Article  CAS  Google Scholar 

  • Van Toan, N., & Anh, V. Q. (2018). Preparation and improved quality production of flour and the made biscuits from purple sweet potato. Journal of Food and Nutrition, 4, 1–14.

    Google Scholar 

  • Vidal, N. P., Bai, W., Geng, M., & Martinez, M. M. (2022). Organocatalytic acetylation of pea starch: effect of alkanoyl and tartaryl groups on starch acetate performance. Carbohydrate Polymers, 294, 119780.

    Article  CAS  PubMed  Google Scholar 

  • Vieira, F. C., & Sarmento, S. B. (2008). Heat-moisture treatment and enzymatic digestibility of Peruvian carrot, sweet potato and ginger starches. Starch-Stärke, 60(5), 223–232.

    Article  CAS  Google Scholar 

  • Vithu, P., Dash, S. K., & Rayaguru, K. (2019). Post-harvest processing and utilization of sweet potato: a review. Food Review International, 35(8), 726–762.

    Article  Google Scholar 

  • Vithu, P., Dash, S. K., Rayaguru, K., Panda, M. K., & Nedunchezhiyan, M. (2020). Optimization of starch isolation process for sweet potato and characterization of the prepared starch. Journal of Food Measurement and Characterization, 14(3), 1520–1532.

    Article  Google Scholar 

  • Walsh, A. M., Crispie, F., Claesson, M. J., & Cotter, P. D. (2017). Translating omics to food microbiology. Annual Review of Food Science and Technology, 8, 113–134.

    Article  PubMed  Google Scholar 

  • Wang, H., Yang, Q., Ferdinand, U., Gong, X., Qu, Y., Gao, W., Ivanistau, A., Feng, B., & Liu, M. (2020a). Isolation and characterization of starch from light yellow, orange, and purple sweet potatoes. International Journal of Biological Macromolecules, 160, 660–668.

    Article  CAS  PubMed  Google Scholar 

  • Wang, H., Yang, Q., Gao, L., Gong, X., Qu, Y., & Feng, B. (2020). Functional and physicochemical properties of flours and starches from different tuber crops. International Journal of Biological Macromolecules, 148, 324–332.

    Article  CAS  PubMed  Google Scholar 

  • Wang, J., Ye, Y., Chai, Z., Liu, H., Wei, X., Ye, X., Tian, J., & Fang, H. (2023). Physicochemical properties and in vitro digestibility of proso millet starch modified by heat-moisture treatment and annealing processing. International Journal of Biological Macromolecules, 235, 123829.

    Article  CAS  PubMed  Google Scholar 

  • Wang, S., Nie, S., & Zhu, F. (2016). Chemical constituents and health effects of sweet potato. Food Research International, 89, 90–116.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X., Wang, J., Liu, H., Zhao, L., Wang, Y., Wu, X., & Liao, X. (2020c). Improving the production efficiency of sweet potato starch using a newly designed sedimentation tank during starch sedimentation process. Journal of Food Processing and Preservation, 44(10), e14811.

    Article  CAS  Google Scholar 

  • Wang, X., Zhao, L., Wang, Y., Xu, Z., Wu, X., & Liao, X. (2021). A new Leuconostoc citreum strain discovered in the traditional sweet potato sour liquid fermentation as a novel bioflocculant for highly efficient starch production. Food Research International, 144, 110327.

    Article  CAS  PubMed  Google Scholar 

  • Wani, A. A., Singh, P., Shah, M. A., Schweiggert-Weisz, U., Gul, K., & Wani, I. A. (2012). Rice starch diversity: Effects on structural, morphological, thermal, and physicochemical properties–A review. Comprehensive Reviews in Food Science and Food Safety, 11(5), 417–436.

    Article  CAS  Google Scholar 

  • Xiaofan, L., Chen, Y., & Zhou, W. (2022). Effect of cross-linking with sodium trimetaphosphate on structural and physicochemical properties of tigernut starch. Food Science and Technology, 42, e76422.

    Article  Google Scholar 

  • Xu, A., Guo, K., Liu, T., Bian, X., Zhang, L., & Wei, C. (2018). Effects of different isolation media on structural and functional properties of starches from root tubers of purple, yellow and white sweet potatoes. Molecules, 23(9), 2135.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu, J., Su, X., Lim, S., Griffin, J., Carey, E., Katz, B., Tomich, J., Smith, J. S., & Wang, W. (2015). Characterisation and stability of anthocyanins in purple-fleshed sweet potato P40. Food Chemistry, 186, 90–96.

    Article  CAS  PubMed  Google Scholar 

  • Yan, H., Lu, Q., & Gui, J. (2021). Characteristics of A/B-type starch-wheat germ oil complexes and their effects on noodle texture. LWT, 144, 111251.

    Article  CAS  Google Scholar 

  • Yang, J., Cao, J., Xu, H., Hou, Q., Yu, Z., Zhang, H., & Sun, Z. (2018). Bacterial diversity and community structure in Chongqing radish paocai brines revealed using PacBio single-molecule real-time sequencing technology. Journal of the Science of Food and Agriculture, 98(9), 3234–3245.

    Article  CAS  PubMed  Google Scholar 

  • Ye, F., Li, J., & Zhao, G. (2020). Physicochemical properties of different-sized fractions of sweet potato starch and their contributions to the quality of sweet potato starch. Food Hydrocolloids, 108, 106023.

    Article  CAS  Google Scholar 

  • Ye, F., Xiao, L., Zhou, Y., & Zhao, G. (2019). Spontaneous fermentation tunes the physicochemical properties of sweet potato starch by modifying the structure of starch molecules. Carbohydrate Polymers, 213, 79–88.

    Article  CAS  PubMed  Google Scholar 

  • Yong, H., Wang, X., Sun, J., Fang, Y., Liu, J., & Jin, C. (2018). Comparison of the structural characterization and physicochemical properties of starches from seven purple sweet potato varieties cultivated in China. International Journal of Biological Macromolecules, 120, 1632–1638.

    Article  CAS  PubMed  Google Scholar 

  • Yuan, M., Wang, Y., Bai, Y., & Svensson, B. (2022). Distinct effects of different α-amylases on cross-linked tapioca starch and gel-improving mechanism. Food Hydrocolloids, 128, 107580.

    Article  CAS  Google Scholar 

  • Yuliana, N., Nurdjanah, S., & Ratna Dewi, Y. (2018). Physicochemical properties of fermented sweet potato flour in wheat composite flour and its use in white bread. International Food Research Journal, 25(3), 1051–1059.

    CAS  Google Scholar 

  • Yuliana, N., Sumardi, S., Jatmiko, E., Rosaline, M., & Iqbal, M. (2020). Potentially lactic acid bacteria as an EPS producing starter from yellow sweet potato fermentation. Biodiversitas Journal of Biological Diversity, 21(9).

  • Zehra, N., Ali, T. M., & Hasnain, A. (2020). Comparative study on citric acid modified instant starches (alcoholic alkaline treated) isolated from white sorghum and corn grains. International Journal of Biological Macromolecules, 150, 1331–1341.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, L., Yu, Y., Li, X., Li, X., Zhang, H., Zhang, Z., & Xu, Y. (2017). Starch flocculation by the sweet potato sour liquid is mediated by the adhesion of lactic acid bacteria to starch. Frontiers in Microbiology, 8, 1412.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, L., Zhao, L., Bian, X., Guo, K., Zhou, L., & Wei, C. (2018). Characterization and comparative study of starches from seven purple sweet potatoes. Food Hydrocolloids, 80, 168–176.

    Article  CAS  Google Scholar 

  • Zhang, Q., Duan, H., Zhou, Y., Zhou, S., Ge, X., Shen, H., Li, W., & Yan, W. (2023). Effect of dry heat treatment on multi-structure, physicochemical properties, and in vitro digestibility of potato starch with controlled surface-removed levels. Food Hydrocolloids, 134, 108062.

    Article  CAS  Google Scholar 

  • Zhao, X., Wang, X., Li, X., Zeng, L., Huang, J., Huang, Q., & Zhang, B. (2022a). Effect of oil modification on the multiscale structure and gelatinization properties of crosslinked starch and their relationship with the texture and microstructure of surimi/starch composite gels. Food Chemistry, 391, 133236.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, X., Zeng, L., Huang, Q., Zhang, B., Zhang, J., & Wen, X. (2022b). Structure and physicochemical properties of cross-linked and acetylated tapioca starches affected by oil modification. Food Chemistry, 386, 132848.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, D., Zhang, H., Guo, B., Xu, K., Dai, Q., Wei, C., Zhou, G., & Huo, Z. (2017). Effects of nitrogen level on structure and physicochemical properties of rice starch. Food Hydrocolloids, 63, 525–532.

    Article  CAS  Google Scholar 

  • Zhu, F., & Xie, Q. (2018). Rheological and thermal properties in relation to molecular structure of New Zealand sweetpotato starch. Food Hydrocolloids, 83, 165–172.

    Article  CAS  Google Scholar 

  • Zhu, F., Yang, X., Cai, Y. Z., Bertoft, E., & Corke, H. (2011). Physicochemical properties of sweetpotato starch. Starch-Stärke, 63(5), 249–259.

    Article  CAS  Google Scholar 

  • Zia-ud-Din, X. H., & Fei, P. (2017). Physical and chemical modification of starches: a review. Critical Reviews in Food Science and Nutrition, 57(12), 2691–2705.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Major Science and Technology Innovation Project of Luohe City (20210109).

Author information

Authors and Affiliations

Authors

Contributions

Qais Ali Al-Maqtari: conceptualization, methodology, software, validation, investigation, writing–original draft, and project administration. Bo Li: conceptualization, validation, investigation, data curation, writing–review, editing, and visualization. Hong-Ju Hea: conceptualization, and validation. Amer Ali Mahdi: software, writing, and editing. Waleed Al‑Ansi: writing–review, and editing. Adnan Saeed: investigation.

Corresponding authors

Correspondence to Qais Ali Al-Maqtari or Bo Li.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Maqtari, Q.A., Li, B., He, HJ. et al. An Overview of the Isolation, Modification, Physicochemical Properties, and Applications of Sweet Potato Starch. Food Bioprocess Technol 17, 1–32 (2024). https://doi.org/10.1007/s11947-023-03086-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-023-03086-1

Keywords

Navigation