Skip to main content
Log in

Separation and Purification of C-Phycocyanin from Spirulina platensis Using Aqueous Two-Phase Systems Based on Triblock Thermosensitive Copolymers

  • RESEARCH
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

C-phycocyanin is a high market value compound derived from cyanobacterium Spirulina platensis and has a wide range of applications in pharmaceutical and food industries as a useful biochemically active compound. In this study, essentially an aqueous two-phase system (ATPS) is presented for purification of C-phycocyanin. The phase behavior of ATPSs that include Pluronic copolymers and salts was evaluated systematically. After that, the effects of different parameters such as salt type, copolymer structure, pH of solution, tie line length (TLL), system’s temperature, and volume ratio for purification of C-phycocyanin were investigated. The results revealed that Pluronic 10R5/potassium phosphate buffer system is the most appropriate system for promoting the C-phycocyanin separation from other contaminants. Besides, the purity index of C-phycocyanin was enhanced by up to 3.92 at TLL of 46.31%, pH = 6, volume ratio of 0.34, and temperature of 35 °C without any loss of stability. At these conditions, the obtained C-phycocyanin recovery was 90%. After that, the purity factor reached to 5.9 by applying the ultrafiltration method. In addition, the results of circular dichroism (CD) spectroscopy proved that the C-phycocyanin structure remained intact during the purification step. Finally, 78% of 10R5 copolymer was recovered by increasing the temperature above 57 °C (micelle formation (which can be used in new ATPS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  • Ahsaie, F. G., & Pazuki, G. (2021). Separation of phenyl acetic acid and 6-aminopenicillanic acid applying aqueous two-phase systems based on copolymers and salts. Scientific Reports, 11(1), 1–10. https://doi.org/10.1038/s41598-021-82476-x

    Article  CAS  Google Scholar 

  • Ahsaie, F. G., Pazuki, G., Sintra, T. E., Carvalho, P., & Ventura, S. P. (2021). Study of the partition of sodium diclofenac and norfloxacin in aqueous two-phase systems based on copolymers and dextran. Fluid Phase Equilibria, 530, 112868. https://doi.org/10.1016/j.fluid.2020.112868

  • Atefi, E., Joshi, R., Mann, J. A., Jr., & Tavana, H. (2015). Interfacial tension effect on cell partition in aqueous two-phase systems. ACS Applied Materials & Interfaces, 7(38), 21305–21314. https://doi.org/10.1021/acsami.5b05757

    Article  CAS  Google Scholar 

  • Baghbanbashi, M., Pazuki, G., & Khoee, S. (2022). One pot silica nanoparticle modification and doxorubicin encapsulation as pH-responsive nanocarriers, applying PEG/lysine aqueous two phase system. Journal of Molecular Liquids, 349, 118472. https://doi.org/10.1016/j.molliq.2022.118472

  • Bakshi, M. S., Sachar, S., Yoshimura, T., & Esumi, K. (2004). Association behavior of poly (ethylene oxide)–poly (propylene oxide)–poly (ethylene oxide) block copolymers with cationic surfactants in aqueous solution. Journal of Colloid and Interface Science, 278(1), 224–233. https://doi.org/10.1016/j.jcis.2004.05.025

    Article  CAS  PubMed  Google Scholar 

  • Begum, H., Yusoff, F. M., Banerjee, S., Khatoon, H., & Shariff, M. (2016). Availability and utilization of pigments from microalgae. Critical Reviews in Food Science and Nutrition, 56(13), 2209–2222. https://doi.org/10.1080/10408398.2013.764841

    Article  CAS  PubMed  Google Scholar 

  • Bhat, V. B., & Madyastha, K. (2001). Scavenging of peroxynitrite by phycocyanin and phycocyanobilin from Spirulina platensis: Protection against oxidative damage to DNA. Biochemical and Biophysical Research Communications, 285(2), 262–266. https://doi.org/10.1006/bbrc.2001.5195

    Article  CAS  PubMed  Google Scholar 

  • Chaiklahan, R., Chirasuwan, N., & Bunnag, B. (2012). Stability of phycocyanin extracted from Spirulina sp.: Influence of temperature, pH and preservatives. Process Biochemistry, 47(4), 659–664. https://doi.org/10.1016/j.procbio.2012.01.010

  • Chandler, E. (2021). Multi-stage aqueous two-phase extraction. University of Sheffield.

  • Chang, Y.-K., Show, P.-L., Lan, J.C.-W., Tsai, J.-C., & Huang, C.-R. (2018). Isolation of C-phycocyanin from Spirulina platensis microalga using ionic liquid based aqueous two-phase system. Bioresource Technology, 270, 320–327.

    Article  CAS  PubMed  Google Scholar 

  • Chen, K.-H., Wang, S.S.-S., Show, P.-L., Hsu, S.-L., & Chang, Y.-K. (2019). Rapid and efficient recovery of C-phycocyanin from highly turbid Spirulina platensis algae using stirred fluidized bed ion exchange chromatography. Separation and Purification Technology, 209, 636–645.

    Article  CAS  Google Scholar 

  • Chethana, S., Nayak, C. A., Madhusudhan, M., & Raghavarao, K. (2015). Single step aqueous two-phase extraction for downstream processing of C-phycocyanin from Spirulina platensis. Journal of Food Science and Technology, 52, 2415–2421.

    Article  CAS  PubMed  Google Scholar 

  • Chew, K. W., Chia, S. R., Krishnamoorthy, R., Tao, Y., Chu, D.-T., & Show, P. L. (2019). Liquid biphasic flotation for the purification of C-phycocyanin from Spirulina platensis microalga. Bioresource Technology, 288, 121519.

    Article  CAS  PubMed  Google Scholar 

  • Chow, Y. H., Yap, Y. J., Anuar, M. S., Tejo, B. A., Ariff, A., Show, P. L., Ng, E.-P., & Ling, T. C. (2013). Interfacial partitioning behaviour of bovine serum albumin in polymer-salt aqueous two-phase system. Journal of Chromatography B, 934, 71–78. https://doi.org/10.1016/j.jchromb.2013.06.034

    Article  CAS  Google Scholar 

  • Chow, Y. H., Yap, Y. J., Tan, C. P., Anuar, M. S., Tejo, B. A., Show, P. L., Ariff, A. B., Ng, E.-P., & Ling, T. C. (2015). Characterization of bovine serum albumin partitioning behaviors in polymer-salt aqueous two-phase systems. Journal of Bioscience and Bioengineering, 120(1), 85–90.

    Article  CAS  PubMed  Google Scholar 

  • Da Silva, M., Da Silva, L. M., Amim, J., Guimarães, R. O., & Martins, J. P. (2006). Liquid-liquid equilibrium of aqueous mixture of triblock copolymers L35 and F68 with Na2SO4, Li2SO4, or MgSO4. Journal of Chemical and Engineering Data, 51(6), 2260–2264. https://doi.org/10.1021/je0603401

    Article  Google Scholar 

  • Darani, S. F., Ahsaie, F. G., Pazuki, G., & Abdolrahimi, S. (2021). Aqueous two-phase systems based on thermo-separating copolymer for partitioning of doxorubicin. Journal of Molecular Liquids, 322, 114542.

    Article  CAS  Google Scholar 

  • de Amarante, M. C. A., Braga, A. R. C., Sala, L., Moraes, C. C., & Kalil, S. J. (2020). Design strategies for C-phycocyanin purification: Process influence on purity grade. Separation and Purification Technology, 252, 117453.

    Article  CAS  Google Scholar 

  • de Oliveira, M. C., de Abreu Filho, M. A. N., & de Alcântara Pessôa Filho, P. (2007). Phase equilibrium and protein partitioning in aqueous two-phase systems containing ammonium carbamate and block copolymers PEO–PPO–PEO. Biochemical Engineering Journal, 37(3), 311–318. https://doi.org/10.1016/j.bej.2007.05.010

    Article  CAS  Google Scholar 

  • Enriquez-Ochoa, D., Sánchez-Trasviña, C., Hernández-Sedas, B., Mayolo-Deloisa, K., Zavala, J., Rito-Palomares, M., & Valdez-García, J. E. (2020). Aqueous two-phase extraction of phenolic compounds from Sedum dendroideum with antioxidant activity and anti-proliferative properties against breast cancer cells. Separation and Purification Technology, 251, 117341. https://doi.org/10.1016/j.seppur.2020.117341

  • Favas, A. R. R. (2021). Anti-ageing potential of cyanobacteria: Effect on matrix metalloproteinases and oxidative stress.

  • Ferreira, L. A., Uversky, V. N., & Zaslavsky, B. Y. (2018). Phase equilibria, solvent properties, and protein partitioning in aqueous polyethylene glycol-600-trimethylamine N-oxide and polyethylene glycol-600-choline chloride two-phase systems. Journal of Chromatography A, 1535, 154–161.

    Article  CAS  PubMed  Google Scholar 

  • Grilo, A. L., Raquel Aires-Barros, M., & Azevedo, A. M. (2016). Partitioning in aqueous two-phase systems: Fundamentals, applications and trends. Separation & Purification Reviews, 45(1), 68–80. https://doi.org/10.1080/15422119.2014.983128

    Article  Google Scholar 

  • Haraguchi, L. H., Mohamed, R. S., Loh, W., & Pessôa Filho, Pd. A. (2004). Phase equilibrium and insulin partitioning in aqueous two-phase systems containing block copolymers and potassium phosphate. Fluid Phase Equilibria, 215(1), 1–15. https://doi.org/10.1016/S0378-3812(03)00368-6

    Article  CAS  Google Scholar 

  • Hou, D., & Cao, X. (2014). Synthesis of two thermo-responsive copolymers forming recyclable aqueous two-phase systems and its application in cefprozil partition. Journal of Chromatography A, 1349, 30–36.

    Article  CAS  PubMed  Google Scholar 

  • Huisman, J., Codd, G. A., Paerl, H. W., Ibelings, B. W., Verspagen, J. M., & Visser, P. M. (2018). Cyanobacterial blooms. Nature Reviews Microbiology, 16(8), 471–483.

    Article  CAS  PubMed  Google Scholar 

  • Jamshidi, S., & Pazuki, G. (2018). Effect of hybrane hyperbranched polymer additive on partitioning of cephalexin antibiotic in aqueous biphasic systems. Journal of Molecular Liquids, 259, 48–54. https://doi.org/10.1016/j.molliq.2018.03.011

    Article  CAS  Google Scholar 

  • Kee, P. E., Yim, H. S., Kondo, A., Lan, J. C.-W., & Ng, H.S. (2022). Extractive fermentation of Kytococcus sedentarius TWHKC01 using the aqueous biphasic system for direct recovery of keratinase: ABS extractive fermentation for keratinase production and recovery. Journal of the Taiwan Institute of Chemical Engineers, 104232. https://doi.org/10.1016/j.jtice.2022.104232

  • Khan, Z., Bhadouria, P., & Bisen, P. (2005). Nutritional and therapeutic potential of Spirulina. Current Pharmaceutical Biotechnology, 6(5), 373–379. https://doi.org/10.2174/138920105774370607

    Article  CAS  PubMed  Google Scholar 

  • Khayati, G., & Alizadeh, S. (2013). Extraction of lipase from Rhodotorula glutinis fermentation culture by aqueous two-phase partitioning. Fluid Phase Equilibria, 353, 132–134. https://doi.org/10.1016/j.fluid.2013.05.037

    Article  CAS  Google Scholar 

  • Kulshreshtha, A., Jarouliya, U., Bhadauriya, P., Prasad, G., & Bisen, P. (2008). Spirulina in health care management. Current Pharmaceutical Biotechnology, 9(5), 400–405.

    Article  CAS  PubMed  Google Scholar 

  • Lauceri, R., Cavone, C., Chini Zittelli, G., Kamburska, L., Musazzi, S., & Torzillo, G. (2023). High purity grade phycocyanin recovery by decupling cell lysis from the pigment extraction: An innovative approach. Food and Bioprocess Technology, 16(1), 111–121.

    Article  CAS  Google Scholar 

  • Liao, G., Gao, B., Gao, Y., Yang, X., Cheng, X., & Ou, Y. (2016). Phycocyanin inhibits tumorigenic potential of pancreatic cancer cells: Role of apoptosis and autophagy. Scientific Reports, 6(1), 1–12.

    Article  Google Scholar 

  • Merchuk, J. C., Andrews, B. A., & Asenjo, J. A. (1998). Aqueous two-phase systems for protein separation: Studies on phase inversion. Journal of Chromatography B: Biomedical Sciences and Applications, 711(1–2), 285–293. https://doi.org/10.1016/S0378-4347(97)00594-X

    Article  CAS  PubMed  Google Scholar 

  • Mittal, R., Sharma, R., & Raghavarao, K. (2019). Aqueous two-phase extraction of R-phycoerythrin from marine macro-algae. Gelidium Pusillum. Bioresource Technology, 280, 277–286.

    Article  CAS  PubMed  Google Scholar 

  • Moraes, C. C., De Medeiros Burkert, J. F., & Kalil, S. J. (2010). C-phycocyanin extraction process for large-scale use. Journal of Food Biochemistry, 34, 133–148. https://doi.org/10.1111/j.1745-4514.2009.00317.x

    Article  Google Scholar 

  • Nandini, K., & Rastogi, N. (2011). Liquid–liquid extraction of lipase using aqueous two-phase system. Food and Bioprocess Technology, 4(2), 295–303.

    Article  CAS  Google Scholar 

  • Narayan, A., & Raghavarao, K. (2007). Extraction and purification of C-phycocyanin from Spirulina platensis employing aqueous two phase systems. International Journal of Food Engineering, 3(4). https://doi.org/10.2202/1556-3758.1105

  • Nascimento, S. S., Santos, V. S. V., Watanabe, E. O., & de Souza, F. J. (2020). Assessment of the purification of phycobiliproteins in cyanobacteria through aqueous two-phase systems with different proportions of PEG/salt. Food and Bioproducts Processing, 119, 345–349.

    Article  CAS  Google Scholar 

  • Nowruzi, B., Konur, O., & Anvar, S. A. A. (2022). The stability of the phycobiliproteins in the adverse environmental conditions relevant to the food storage. Food and Bioprocess Technology, 1–18

  • Patel, H. M., Rastogi, R. P., Trivedi, U., & Madamwar, D. (2018). Structural characterization and antioxidant potential of phycocyanin from the cyanobacterium Geitlerinema sp. H8DM. Algal Research, 32, 372–383. https://doi.org/10.1016/j.algal.2018.04.024

    Article  Google Scholar 

  • Patil, G., & Raghavarao, K. (2007). Aqueous two phase extraction for purification of C-phycocyanin. Biochemical Engineering Journal, 34(2), 156–164. https://doi.org/10.1016/j.bej.2006.11.026

    Article  CAS  Google Scholar 

  • Patil, G., Chethana, S., Sridevi, A., & Raghavarao, K. (2006). Method to obtain C-phycocyanin of high purity. Journal of Chromatography a, 1127(1–2), 76–81. https://doi.org/10.1016/j.chroma.2006.05.073

    Article  CAS  PubMed  Google Scholar 

  • Pei, Y., Li, Z., Liu, L., & Wang, J. (2012). Partitioning behavior of amino acids in aqueous two-phase systems formed by imidazolium ionic liquid and dipotassium hydrogen phosphate. Journal of Chromatography A, 1231, 2–7.

    Article  CAS  PubMed  Google Scholar 

  • Peng, Q., Li, Z., & Li, Y. (1994). Thermodynamics of potassium hydrogen phosphate-potassium dihydrogen phosphate-polyethylene glycol aqueous two-phase systems. Fluid Phase Equilibria, 95, 341–357. https://doi.org/10.1016/0378-3812(94)80078-2

    Article  CAS  Google Scholar 

  • Phong, W. N., Show, P. L., Chow, Y. H., & Ling, T. C. (2018). Recovery of biotechnological products using aqueous two phase systems. Journal of Bioscience and Bioengineering, 126(3), 273–281.

    Article  CAS  PubMed  Google Scholar 

  • Pimentel, J. G., Bicalho, S. F., Gandolfi, O. R. R., Verissimo, L. A. A., de Sousa, C. S., Souza, E. A., Veloso, C. M., Fontan, Rd. C. I., Sampaio, V. S., & Bonomo, R. C. F. (2017). Evaluation of salting-out effect in the liquid–liquid equilibrium of aqueous two-phase systems composed of 2-propanol and Na2SO4/MgSO4 at different temperatures. Fluid Phase Equilibria, 450, 184–193. https://doi.org/10.1016/j.fluid.2017.08.001

    Article  CAS  Google Scholar 

  • Pitto-Barry, A., & Barry, N. P. (2014). Pluronic® block-copolymers in medicine: From chemical and biological versatility to rationalisation and clinical advances. Polymer Chemistry, 5(10), 3291–3297.

    Article  CAS  Google Scholar 

  • Prandi, B., Di Massimo, M., Tedeschi, T., Rodríguez-Turienzo, L., & Rodríguez, Ó. (2022). Ultrasound and microwave-assisted extraction of proteins from coffee green beans: Effects of process variables on the protein integrity. Food and Bioprocess Technology, 15(12), 2712–2722.

    Article  CAS  Google Scholar 

  • Rito-Palomares, M., & Benavides, J. (2017). Aqueous two-phase systems for bioprocess development for the recovery of biological products. Springer.

    Book  Google Scholar 

  • Rito-Palomares, M., & Hernandez, M. (1998). Influence of system and process parameters on partitioning of cheese whey proteins in aqueous two-phase systems. Journal of Chromatography B: Biomedical Sciences and Applications, 711(1–2), 81–90. https://doi.org/10.1016/S0378-4347(98)00011-5

    Article  CAS  PubMed  Google Scholar 

  • Saini, M. K., & Sanyal, S. N. (2015). Cell cycle regulation and apoptotic cell death in experimental colon carcinogenesis: Intervening with cyclooxygenase-2 inhibitors. Nutrition and Cancer, 67(4), 620–636.

    Article  CAS  PubMed  Google Scholar 

  • Shiran, H. S., Baghbanbashi, M., Ahsaie, F. G., & Pazuki, G. (2020). Study of curcumin partitioning in polymer-salt aqueous two phase systems. Journal of Molecular Liquids, 303, 112629. https://doi.org/10.1016/j.molliq.2020.112629

    Article  CAS  Google Scholar 

  • Silvério, S. C., Rodríguez, O., Teixeira, J. A., & EnA, M. (2013). The effect of salts on the liquid–liquid phase equilibria of PEG600+ salt aqueous two-phase systems. Journal of Chemical & Engineering Data, 58(12), 3528–3535. https://doi.org/10.1021/je400825w

    Article  CAS  Google Scholar 

  • Sintra, T. E., Bagagem, S. S., Ahsaie, F. G., Fernandes, A., Martins, M., Macário, I. P., Pereira, J. L., Gonçalves, F. J., Pazuki, G., & Coutinho, J. A. (2021). Sequential recovery of C-phycocyanin and chlorophylls from Anabaena cylindrica. Separation and Purification Technology, 255, 117538.

    Article  CAS  Google Scholar 

  • Suarez Ruiz, C. A., Emmery, D. P., Wijffels, R. H., Eppink, M. H., & van den Berg, C. (2018). Selective and mild fractionation of microalgal proteins and pigments using aqueous two-phase systems. Journal of Chemical Technology & Biotechnology, 93(9), 2774–2783. https://doi.org/10.1002/jctb.5711

    Article  CAS  Google Scholar 

  • Taragjini, E., Ciardi, M., Musari, E., Villaró, S., Morillas-España, A., Alarcón, F. J., & Lafarga, T. (2022). Pilot-scale production of A. platensis: Protein isolation following an ultrasound-assisted strategy and assessment of techno-functional properties. Food and Bioprocess Technology, 15(6), 1299–1310

  • Vicente, F. A., Santos, J. H., Pereira, I. M., Gonçalves, C. V., Dias, A. C., Coutinho, J. A., & Ventura, S. P. (2019). Integration of aqueous (micellar) two-phase systems on the proteins separation. BMC Chemical Engineering, 1(1), 1–12. https://doi.org/10.1186/s42480-019-0004-x

    Article  Google Scholar 

  • Wang, L., Wang, Y., Qin, Y., Liu, B., & Zhou, Y. (2022). Extraction and determination of protein from edible oil using aqueous biphasic systems of ionic liquids and salts. Food and Bioprocess Technology, 15(1), 190–202.

    Article  CAS  Google Scholar 

  • Wang, Y., Li, Y., Han, J., Xia, J., Tang, X., Chen, T., & Ni, L. (2016). Cloudy behavior and equilibrium phase behavior of triblock copolymer L64+ salt+ water two-phase systems. Fluid Phase Equilibria, 409, 439–446. https://doi.org/10.1016/j.fluid.2015.10.046

    Article  CAS  Google Scholar 

  • Wang, Y., Mao, Y., Han, J., Liu, Y., & Yan, Y. (2010). Liquid− liquid equilibrium of potassium phosphate/potassium citrate/sodium citrate+ ethanol aqueous two-phase systems at (298.15 and 313.15) K and correlation. Journal of Chemical & Engineering Data, 55(12), 5621–5626. https://doi.org/10.1021/je100501f

  • Wu, J., Xu, Y., Dabros, T., & Hamza, H. (2005). Effect of EO and PO positions in nonionic surfactants on surfactant properties and demulsification performance. Colloids and Surfaces a: Physicochemical and Engineering Aspects, 252(1), 79–85. https://doi.org/10.1016/j.colsurfa.2004.09.034

    Article  CAS  Google Scholar 

  • Zhao, X., Xie, X., & Yan, Y. (2011). Liquid–liquid equilibrium of aqueous two-phase systems containing poly (propylene glycol) and salt ((NH4) 2SO4, MgSO4, KCl, and KAc): Experiment and correlation. Thermochimica Acta, 516(1–2), 46–51. https://doi.org/10.1016/j.tca.2011.01.010

    Article  CAS  Google Scholar 

Download references

Funding

The study was financially supported by the Iran National Science Foundation (INSF) with grant number 98020043.

Author information

Authors and Affiliations

Authors

Contributions

Alireza Ebrahimi: conceptualization, methodology, investigation, formal analysis, writing–original draft. Gholamreza Pazuki: investigation, writing–review and editing, supervision. Mehrdad Mozaffarian: writing–review and editing, supervision. Farzaneh Ghazizadeh Ahsaie: methodology, investigation, writing–review and editing. Hamed Abedini: investigation, supervision.

Corresponding author

Correspondence to Gholamreza Pazuki.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 197 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimi, A., Pazuki, G., Mozaffarian, M. et al. Separation and Purification of C-Phycocyanin from Spirulina platensis Using Aqueous Two-Phase Systems Based on Triblock Thermosensitive Copolymers. Food Bioprocess Technol 16, 2582–2597 (2023). https://doi.org/10.1007/s11947-023-03057-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-023-03057-6

Keywords

Navigation