Skip to main content

Advertisement

Log in

Application of High Pressure for Selective Activity Regulation of Starter Cultures Aminopeptidases Involved in Ripening of Brined Cheeses

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The combined effect of high pressure processing and temperature on aminopeptidases activity of lactic acid bacteria used as starter cultures in brined cheese manufacturing, in order to find the optimum process conditions for acceleration of the significant long-duration cheese ripening step, was investigated.

The effect of high hydrostatic pressure (HP) (100–450 MPa) combined with temperature (20–40 °C) on the activity of five aminopeptidases (PepN, PepX, PepY, PepC, and PepA) of Streptococcus thermophilus ACA-DC 0022 and Lactococcus lactis ACA-DC 0049, used as the starter culture for white Greek brine cheese (feta) production, was studied. S. thermophilus aminopeptidases PepN, PepX, PepA, and PepC were activated at pressures up to 200 MPa, and all studied temperatures (20–40 °C), while for L. lactis, PepN, X, and Y were activated at pressures up to 300 MPa and temperatures up to 30 °C and PepA at the same temperature range but milder pressures (up to 200 MPa). For L. lactis, PepC an increase in activity was observed at all studied pressures but only at 20 °C. A multi-parameter equation was used for predicting the activation of all aminopeptidases in the pressure and temperature domain. Overall, processing at 200 MPa and 20 °C may be selected as the optimum conditions for maximum activation of all aminopeptidases of both S. thermophilus ACA-DC 0022 and L. lactis ACA-DC 0049. A 20-min treatment at these conditions leads to an average threefold increase in activity which could lead to better and faster maturation of white cheese.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Addeo, F., Chianese, L., Salzano, A., Sacchi, R., Cappuccio, U., Ferranti, P., & Malorni, A. (1992). Characterization of the 12 % trichloroacetic acid-insoluble oligopeptides of Parmigiano-Reggiano cheese. Journal of Dairy Research, 59, 401–411.

    Article  CAS  Google Scholar 

  • Alexandrakis, Z., Katsaros, G., Stavros, P., Katapodis, P., Nounesis, G., & Taoukis, P. (2014). Comparative structural changes and inactivation kinetics of pectin methylesterases from different orange cultivars processed by high pressure. Food and Bioprocess Technology, 7 (3), 853–867.

  • Anifantakis, E., & Moatsou, G. (2006). Feta and other Balkan cheeses. In A. Y. Tamime (Ed.), Brined Cheeses (pp. 43–71). Blackwell Publishing

  • Aston, J. W., Giles, J. E., Durward, I. G., & Dulley, J. R. (1985). Effect of elevated ripening temperatures on proteolysis and flavour development in Cheddar cheese. Journal of Dairy Research, 52(04), 565–572.

    Article  Google Scholar 

  • Bastian, E. D., Lo, C. G., & Davi, K. M. (1997). Plasminogen activation in cheese milk: influence on Swiss cheese ripening. Journal of Dairy Science, 80, 245–251.

    Article  CAS  Google Scholar 

  • Benfeldt, C., Sorensen, J., Ellegard, H. K., & Petersen, E. T. (1997). Heat treatment of cheese milk: effect on plasmin activity and proteolysis during cheese ripening. Int Dairy Journal, 7, 723–731.

    Article  CAS  Google Scholar 

  • Casal, V., & Gomez, R. (1999). Effect of high pressure on the viability and enzymatic activity of mesophilic lactic acid bacteria. Journal of Dairy Science, 82, 1092–1098.

    Article  CAS  Google Scholar 

  • Christensen, J. E., Dudley, E. G., Pedersen, J. A., & Steele, J. (1999). Peptidases and amino acid catabolism in lactic acid bacteria. Antonie Van Leeuwenhoek, 76, 217–246.

    Article  CAS  Google Scholar 

  • Erdem, Y. K. (2005). Effect of ultrafiltration, fat reduction and salting on textural properties of white brined cheese. Journal of Food Engineering, 71, 366–372.

    Article  Google Scholar 

  • Exterkate, F. A., & DeVeer, G. J. C. M. (1987). Purification and some properties of a membrane-bound aminopeptidase A from Streptococcus cremoris. Applied and Environmental Microbiology, 53, 577–583.

    CAS  Google Scholar 

  • Fallico, V., McSweeney, P. L., Siebert, K. J., Horne, J., Caprino, S., & Licitra, G. (2004). Chemometric analysis of proteolysis during ripening of Ragusano cheese. Journal of Dairy Science, 87(10), 3138–3152.

    Article  CAS  Google Scholar 

  • Fox, P. F. (1989). Proteolysis during cheese manufacture and ripening. Journal of Dairy Science, 72, 1379–1408.

    Article  CAS  Google Scholar 

  • Fox, P. F., & McSweeney, P. L. H. (1998). Dairy chemistry and biochemistry. New York: Kluwer Academic/Plenum.

    Google Scholar 

  • Fox, P. F., Singh, T. K., & McSweeney, P. L. H. (1994). Proteolysis in cheese during ripening. In A. T. Andrews & J. Varley (Eds.), Biochemistry of milk products (pp. 1–31). London: Royal Society of Chemistry.

    Google Scholar 

  • Gagnaire, V., Thierry, A., & Leonil, J. (2001). Propionibacteria and facultatively heterofermentative lactobacilli weakly contribute to secondary proteolysis of Emmental cheese. Le Lait, 81, 339–353.

    Article  CAS  Google Scholar 

  • Kalit, S., Havranek, J. L., Kaps, M., Perko, B., & Cubric, V. C. (2005). Proteolysis and the optimal ripening time of Tounj cheese. International Journal of Dairy Technology, 619–624

  • Katsaros, G. I., Giannoglou, M. N., & Taoukis, P. S. (2009). Kinetic study of the combined effect of high hydrostatic pressure and temperature on the activity of Lactobacillus delbrueckii ssp.bulgaricus aminopeptidases. Journal of Food Science, 74, E219–E225.

    Article  CAS  Google Scholar 

  • Khasraghi, M. M., Sefidkouhi, G., & Valipour, M. (2015). Simulation of open- and closed-end border irrigation systems using SIRMOD. Archives of Agronomy and Soil Science, 61(7), 929–941.

    Article  Google Scholar 

  • Kunji, E. R., Mierau, I., Hagting, A., Poolman, B., & Konings, W. N. (1996). The proteolytic systems of lactic acid bacteria. Antonie Van Leeuwenhoek, 70, 187–221.

    Article  CAS  Google Scholar 

  • Law, B. A. (1984). The accelerated ripening of cheese. In F. L. Davies & B. A. Law (Eds.), Advances in the microbiology and biochemistry of cheese and fermented milk (pp. 209–228). London: Elsevier Applied Science Publishers.

    Google Scholar 

  • Malone, A. S., Wick, C., Shellhammer, T. H., & Courtney, P. D. (2003). High pressure effects on proteolytic and glycolytic enzymes involved in cheese manufacturing. Journal of Dairy Science, 86(4), 1139–1146.

    Article  CAS  Google Scholar 

  • Messens, W., Estepar-Garcia, J., Dewettinck, K., & Huyghebaert, A. (1999). Proteolysis of high pressure-treated Gouda cheese. International Dairy Journal, 9, 775–782.

    Article  CAS  Google Scholar 

  • Mierau, I., Kunji, E. R., Leenhouts, K. J., Hellendoorn, M. A., Haandrikman, A. J., Poolman, B., Konings, W. N., Venema, G., & Kok, J. (1996). Multiple-peptidase mutants of Lactococcus lactis are severely impaired in their ability to grow in milk. Journal of Bacteriology, 178, 2794–2803.

    CAS  Google Scholar 

  • Miyakawa, H., Anjitsu, K., Ishibashi, N., & Shimamura, S. (1994). Effects of pressure on enzyme activities of Lactobacillus helveticus LHE-511. Biosci. Biotech. Biochem., 58, 606–607.

    Article  CAS  Google Scholar 

  • Moatsou, G., Bakopanos, C., Katharios, D., Katsaros, G., Kandarakis, I., Taoukis, P., & Politis, I. (2008). Effect of high-pressure treatment at various temperatures on indigenous proteolytic enzymes and whey protein denaturation in bovine milk. Journal of Dairy Research, 75(3), 262–269.

    Article  CAS  Google Scholar 

  • Mozhaev, V., Heremans, K., Frank, J., Masson, P., & Balny, C. (1996). High pressure effects on protein structure and function. Proteins, 24, 81–91.

  • Mulvihill, D. M., & McCarthy, A. (1994). Proteolytic and rheological changes during aging of cheese analogues made from rennet caseins. International Dairy Journal, 4, 15–23.

    Article  Google Scholar 

  • Neviani, E., Boquien, C. Y., Monnet, V., Phan Thanh, L., & Gripon, J. C. (1989). Purification and characterization of an aminopeptidase from Lactococcus lactis subsp. cremoris AM2. Applied and Environmental Microbiology, 55, 2308–2314.

    CAS  Google Scholar 

  • Niven, G. W. (1991). Purification and characterization of aminopeptidase A from Lactococcus lactis subsp. lactis NCDO712. Journal of General Microbiology, 137, 1207–1212.

    Article  CAS  Google Scholar 

  • O’Reilly, C. E., Kelly, A. L., Murphy, P. M., & Beresford, T. P. (2000). Effect of high pressure on proteolysis during ripening of Cheddar cheese. Innov. Food Sci. Emerg. Technol., 1, 109–117.

    Article  Google Scholar 

  • O’Reilly, C. E., Kelly, A. L., Murphy, P. M., & Beresford, T. P. (2001). High pressure treatment: applications in cheese manufacture and ripening. Trends in Food Sci. & Techn., 12, 51–59.

    Article  Google Scholar 

  • O’Reilly, C. E., Kelly, A. L., Oliveira, J. C., Murphy, P. M., Auty, M. A. E., & Beresford, T. P. (2003). Effect of varying high-pressure treatment conditions on acceleration of ripening of Cheddar cheese. Innovative Food Science and Emerging Technologies, 4, 277–284.

    Article  Google Scholar 

  • Polydera, A., Galanou, E., Stoforos, N., & Taoukis, P. (2004). Inactivation kinetics of pectin methylesterase of greek Navel orange juice as a function of high hydrostatic pressure and temperature process conditions. Journal of Food Engineering, 62, 291–298.

  • Rovere, P. (1995). The third dimension of food technology. Technologie alimentari. Tetra Pak Report, N.4, 2–8.

    Google Scholar 

  • Saldo, J., Sendra, E., & Guamis, B. (2000a). High hydrostatic pressure for accelerating ripening of goat’s milk cheese: proteolysis and texture. J. Food Sci, 65(4), 636–640.

    Article  CAS  Google Scholar 

  • Saldo, J., Mc Sweeney, P. L. H., Sendra, E., Kelly, A. L., & Guamis, B. (2000b). Changes in curd acidification caused by high pressure treatment. Ir. J. Agric. Food Res., 39, 169.

    Google Scholar 

  • Scherze, I., Sienkiewiez, T., & Krenkel, K. (1994). Untersuchungen zum proteolytischen Abbau der caseine.2. Einfluβ von Plasmin auf die Proteolyse im Gaudakase. Milchwissenschaft, 41, 536–540.

    Google Scholar 

  • Tan, S. T., & Konings, W. N. (1990). Purification and characterization of aminopeptidase from Lactococcus lactis subsp. cremoris Wg2. Appl. Environmental Microbiology, 56, 526–532.

    CAS  Google Scholar 

  • Trujillo, A. J., Pavia, M., Ferragut, V., Casals, I., & Guamis, B. (2000). Analysis of proteins in milk and cheese by capillary zone electrophoresis. In S. G. Pandalai (Ed.), Recent Research Developments in Agricultural & Food Chemistry (pp. 239–255). Trivandrum: Research Signpost.

    Google Scholar 

  • Ur-Rehman, S., Fox, P. F., & McSweeney, P. L. H. (2000). Methods used to study non-starter microorganisms in cheese: a review. Int. J. Dairy Techn., 53, 113–119.

    Article  Google Scholar 

  • Valipour, M. (2012a). Sprinkle and trickle irrigation system design using tapered pipes for pressure loss adjusting. Journal of Agricultural Science, 4, 12. doi:10.5539/jas.v4n12p125.

    Google Scholar 

  • Valipour, M. (2012b). Comparison of surface irrigation simulation models: full hydrodynamic, zero inertia, kinematic wave. Journal of Agricultural Science, 4, 12. doi:10.5539/jas.v4n12p68.

    Google Scholar 

  • Valipour, M. (2016). Optimization of neural networks for precipitation analysis in a humid region to detect drought and wet year alarms. Meteorological Applications, 23, 91–100.

    Article  Google Scholar 

  • Vesanto, E., Savijoki, K., Rantanen, T., Steele, J. L., & Palva, A. (1995). An X-prolyl dipeptidyl aminopeptidase (pepX) gene from Lactobacillus helveticus. Microbiol., 141, 3067–3075.

    Article  CAS  Google Scholar 

  • Visser, S. (1993). Proteolytic enzymes and their relation to cheese ripening and flavor: an overview. Journal of Dairy Science, 76, 329–350.

    Article  CAS  Google Scholar 

  • Yannopoulos, S., Lyberatos, G., Theodossiou, N., Li, W., Valipour, M., Tamburrino, A., & Angelakis, A. (2015). Evolution of water lifting devices (pumps) over the centuries worldwide: review. Water., 7, 5031–5060.

    Article  Google Scholar 

  • Yokoyama, K., Chiba, H., & Yoshikawa, M. (1992). Peptide inhibitors for angiotensin l-converting enzyme from thrmolysin digest of dried bonito. Bioscience Biotech Biochemistry, 56(10), 1541–1545.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Professor Tsakalidou E. from the Agricultural University of Athens for providing the two strains of the lactic acid bacteria for the conduction of the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Taoukis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giannoglou, M.N., Katsaros, G.I. & Taoukis, P.S. Application of High Pressure for Selective Activity Regulation of Starter Cultures Aminopeptidases Involved in Ripening of Brined Cheeses. Food Bioprocess Technol 9, 1991–2001 (2016). https://doi.org/10.1007/s11947-016-1781-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-016-1781-3

Keywords

Navigation