Skip to main content
Log in

Ratiometric Oxygen Imaging to Predict Oxygen Diffusivity in Oak Wood During Red Wine Barrel Aging

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

In this work, we present a high-resolution oxygen imaging approach to study the two-dimensional oxygen distribution inside an oak stave in contact with wine and that applies the series resistance model to explain the dynamic evolution of oak wood oxygen transfer rate (OTR). Oxygen flux throughout the oak stave has been studied by considering the wood as a permeable membrane with moisture content (MC) in a decreasing gradient from the wine-contacting side of the oak stave to the side in contact with atmospheric air in cellar conditions. The presence of different levels of liquid across the thickness of the wet stave modifies the oxygen diffusion flux, as the diffusion coefficient of oxygen in water is four orders of magnitude lower than in air. The stave resembles a multilayered membrane, where wood with an MC over the fiber saturation point represents a distinct layer. To that end, three simultaneous measurements were made, namely the MC profile of the wood within the thickness of the stave at different liquid-wood contact times, the OTR of the stave at those times, and finally the oxygen concentration profile within the thickness of the stave using planar optical sensors, a color camera, and ratiometric image analysis. The results show heat flux and oxygen flux that is analogous to that in a multilayer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • ASTM. (2015). ASTM D4442—15 standard test methods for direct moisture content measurement of wood and wood-based materials.

  • del Alamo-Sanza, M., & Nevares, I. (2012). PCT/ES2012/070084 device for measuring the permeability and diffusivity of gases in porous materials and method for measuring said parameters using the device. (W.-W. I. P. Organization, Ed.). PCT/ES2012/070084 International . http://patentscope.wipo.int/search/en/WO2012107625

  • del Alamo-Sanza, M., & Nevares, I. (2014). Recent advances in the evaluation of the oxygen transfer rate in oak barrels. Journal of Agricultural and Food Chemistry, 62(35), 8892–8899. doi:10.1021/jf502333d.

    Article  Google Scholar 

  • Demas, J. N., DeGraff, B. A., & Xu, W. (1995). Modeling of luminescence quenching-based sensors: comparison of multisite and nonlinear gas solubility models. Analytical Chemistry, 67(8), 1377–1380. doi:10.1021/ac00104a012.

    Article  CAS  Google Scholar 

  • Feuillat, F. (1996). Contribution à l’étude des phénomènes d’échanges bois/vin/atmosphère à l’aide d’un “fût” modèle. Relations avec l’anatomie du bois de chêne (*Quercus robur* L., *Quercus petraea* Liebl.). Lab. de Recherches en Sciences Forestières de l’ENGREF. Nancy; France: Ecole Nationale du Génie Rural des Eaux et des Forêts.

  • Gorvud, M. R., & Arganbrigh, D. G. (1980). Comparison of methods for preparation of moisture content gradient sections, 12(1), 7–11.

  • Graff, G. L., Williford, R. E., & Burrows, P. E. (2004). Mechanisms of vapor permeation through multilayer barrier films: lag time versus equilibrium permeation. Journal of Applied Physics, 96(4), 1840. doi:10.1063/1.1768610.

    Article  CAS  Google Scholar 

  • Gu, H. M., & Zink-Sharp, A. (1999). Measurement of moisture gradients during kiln-drying. Forest Products Journal, 49(4), 77–86.

    Google Scholar 

  • Hansmann, C., Gindl, W., & Wimmer, R. (2002). Permeability of wood—a review. Wood Research, 47(4), 1–16.

    Google Scholar 

  • Hicks, W. T., & Harmon, M. E. (2002). Diffusion and seasonal dynamics of O2 in woody debris from the Pacific Northwest, USA. Plant and Soil, 243(1), 67–79. doi:10.1023/a:1019906101359.

    Article  CAS  Google Scholar 

  • Huang, H. I., Sarkanen, K. V., & Johanson, L. N. (1977). Diffusion of dissolved oxygen in liquid-saturated Douglas fir sapwood. Wood Science and Technology, 11(3), 225–236. doi:10.1007/bf00365617.

    Article  CAS  Google Scholar 

  • Larsen, M., Borisov, S. M., Grunwald, B., Klimant, I., & Glud, R. N. (2011). A simple and inexpensive high resolution color ratiometric planar optode imaging approach: application to oxygen and pH sensing. Limnology and Oceanography: Methods, 9(9), 348–360. doi:10.4319/lom.2011.9.348.

    Article  CAS  Google Scholar 

  • Liebsch, G., Klimant, I., Frank, B., Holst, G., & Wolfbeis, O. S. (2000). Luminescence lifetime imaging of oxygen, pH, and carbon dioxide distribution using optical sensors. Applied Spectroscopy, 54(4), 548–559.

    Article  CAS  Google Scholar 

  • Mcmillen, J. M. (1955). Drying stresses in Red Oak. Forest Products Journal, 5(1), 71–76. http://www.fpl.fs.fed.us/documnts/pdf1955/mcmil55b.pdf.

    Google Scholar 

  • Mehta, G., Mehta, K., Sud, D., Song, J. W., Bersano-Begey, T., Futai, N., et al. (2007). Quantitative measurement and control of oxygen levels in microfluidic poly(dimethylsiloxane) bioreactors during cell culture. Biomedical Microdevices, 9(2), 123–34. doi:10.1007/s10544-006-9005-7.

    Article  CAS  Google Scholar 

  • Mugnai, S., & Mancuso, S. (2010). Oxygen transport in the sapwood of trees. In S. Mancuso & S. Shabala (Eds.), Waterlogging signalling and tolerance in plants (pp. 61–75). Berlin Heidelberg: Springer. doi:10.1007/978-3-642-10305-6_4.

    Chapter  Google Scholar 

  • Nevares, I., & del Alamo-Sanza, M. (2015). Oak stave oxygen permeation: a new tool to make barrels with different wine oxygenation potentials. Journal of Agricultural and Food Chemistry, 63(4), 1268–1275. doi:10.1021/jf505360r.

    Article  CAS  Google Scholar 

  • Nevares, I., Crespo, R., González, C., & del Alamo-Sanza, M. (2014). Imaging of oxygen permeation in the oak wood of wine barrels using optical sensors and a colour camera. Australian Journal of Grape and Wine Research, 20(3), 353–360.

    Article  CAS  Google Scholar 

  • Peterson, R. G. (1976). Formation of reduced pressure in barrels during wine aging. American Journal of Enology and Viticulture, 27(2), 80–81.

    Google Scholar 

  • Piringer, O. G., & Baner, A. L. (2000). Plastic packaging materials for food : barrier function, mass transport, quality assurance, and legislation. Weinheim; New York: Wiley-VCH.

    Book  Google Scholar 

  • Rosenkilde, A. (2002). Moisture content profiles and surface phenomena during drying of wood. KTH-Royal Institute of Technology.

  • Ruiz de Adana, S. M. (2002). Aplicación de la Dinámica de Fluidos Computacional al Control de las mermas de vino en naves de crianza climatizadas. Ingeniería mecánica. La Rioja: Universidad de La Rioja.

    Google Scholar 

  • Ruiz de Adana, M., López, L. M., & Sala, J. M. (2005). A Fickian model for calculating wine losses from oak casks depending on conditions in ageing facilities. Applied Thermal Engineering, 25(5-6), 709–718.

    Article  Google Scholar 

  • Sorz, J., & Hietz, P. (2006). Gas diffusion through wood: implications for oxygen supply. Trees - Structure and Function, 20(1), 34–41. doi:10.1007/s00468-005-0010-x.

    Article  Google Scholar 

  • Sud, D., Mehta, G., Mehta, K., Linderman, J., Takayama, S., & Mycek, M.-A. (2006). Optical imaging in microfluidic bioreactors enables oxygen monitoring for continuous cell culture. Journal of Biomedical Optics, 11(5), 050504. doi:10.1117/1.2355665.

    Article  Google Scholar 

  • Ungerböck, B., Mistlberger, G., Charwat, V., Ertl, P., & Mayr, T. (2010). Oxygen imaging in microfluidic devices with optical sensors applying color cameras. Procedia Engineering, 5(0), 456–459. doi:10.1016/j.proeng.2010.09.145.

    Article  Google Scholar 

  • Ungerböck, B., Charwat, V., Ertl, P., & Mayr, T. (2013). Microfluidic oxygen imaging using integrated optical sensor layers and a color camera. Lab on a Chip, 13(8), 1593–1601. doi:10.1039/C3LC41315B.

    Article  Google Scholar 

  • Ungerböck, B., Pohar, A., Mayr, T., & Plazl, I. (2013). Online oxygen measurements inside a microreactor with modeling of transport phenomena. Microfluidics and Nanofluidics, 14(3-4), 565–574. doi:10.1007/s10404-012-1074-8.

    Article  Google Scholar 

  • Vivas, N. (1999). Modélisation et calcul du bilan des apports d’oxygène au cours de l’élevage des vins rouges. III - Interprétation des bilans et maitrise des apports d’oxygène. Progrès Agricole et Viticole, 116(1), 16–18.

    Google Scholar 

  • Vivas, N., Debeda, H., Menil, F., Vivas de Gaulejac, N., & Nonier, M. F. (2003). Mise en évidence du passage de l’oxygène au travers des douelles constituant les barriques par l’utilisation d’un dispositif original de mesure de la porosité du bois. Premiers résultats. Sciences des Aliments, 23(5-6), 655–678. doi:10.3166/sda.23.655-678.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María del Alamo-Sanza.

Ethics declarations

Funding

This work was financed by the Ministerio de Ciencia e Innovacion, Ministerio de Economía y Competitividad and the European Regional Development Fund (MICINN-FEDER, AGL2011-26931 and MINECO-FEDER, AGL2014-54602-P) and by the Junta de Castilla y León (VA-086A11-2, VA124U14) from Spain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nevares, I., Mayr, T., Baro, J.A. et al. Ratiometric Oxygen Imaging to Predict Oxygen Diffusivity in Oak Wood During Red Wine Barrel Aging. Food Bioprocess Technol 9, 1049–1059 (2016). https://doi.org/10.1007/s11947-016-1695-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-016-1695-0

Keywords

Navigation