Skip to main content
Log in

Reduction of Acrylamide Formation in Sweet Bread with l-Asparaginase Treatment

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Acrylamide, 2-propenamide, has the chemical formula \( \mathrm{CH}2=\mathrm{CH}-\mathrm{CO}-\mathrm{NH}2 \). It is produced at elevated levels in high temperature fried and baked foods. It has adverse effects on human health and is proven to be neurotoxic, genotoxic, carcinogenic, and toxic to reproductive system. The aim of this paper was to reduce acrylamide formation in bakery products such as sweet bread by enzyme treatment. l-Asparaginase produced from Cladosporium sp. was treated to wheat-based dough at different concentrations (50–300 U). There was no change in the rheological properties of wheat flour and physico-sensory characteristics of bread with l-asparaginase treatment. Moisture, sugars, l-asparagine, acrylamide, and some indicators of Millard reaction (hydroxymethylfurfural (HMF), color, browning) were estimated. With increase in l-asparaginase level the acrylamide formation was reduced. At 300 U, there was 97 % and 73 % reduction of acrylamide formation in the crust and crumb regions of bread, respectively. HMF, a common intermediate product in the Maillard reaction and a genotoxic compound via 5-sulfoxymethylfurfural, also decreased in l-asparaginase-treated bread samples. These results indicated the potential of l-asparaginase enzyme for industrial and domestic applications in reducing harmful Maillard reaction compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • AACC (2000). Methods 54-21, 22-10, 74-09, 44-15, 46-10, 08-01. Minnesota: Approved methods of the American Association of Cereal Chemists, AACC.

  • Abraham, K., Gurtler, R., Berg, K., Heinemeyer, G., Lampen, A., & Appel, K. E. (2011). Toxicology and risk assessment of 5-hydroxymethylfurfural in food. Molecular Nutrition & Food Research, 55, 667–678.

    Article  CAS  Google Scholar 

  • Amrein, T. M., Schonbachler, B., Escher, F., & Amado, R. (2004). Acrylamide in gingerbread: Critical factors for formation and possible ways for reduction. Journal of Agricultural and Food Chemistry, 52, 4282–4288.

    Article  CAS  Google Scholar 

  • AOAC. (1999). Sugar content (968.28). Official methods of analysis (16th ed.). Maryland: Association of Official Analytical Chemists, AOAC.

    Google Scholar 

  • Becalski, A., Lau, B. P. Y., Lewis, D., & Seaman, S. W. (2003). Acrylamide in foods: Occurrence, sources, and modelling. Journal of Agricultural and Food Chemistry, 51(3), 802–808.

    Article  CAS  Google Scholar 

  • Biedermann, M., Biedermann-Brem, S., Noti, A., & Grob, K. (2002). Methods for determining the potential of acrylamide formation and its elimination in raw materials for food preparation, such as potatoes. Mitteilungen aus Lebensmitteluntersuchung und Hygiene, 93, 653–667.

    CAS  Google Scholar 

  • Cheng, B., Charles, C. R., & Bruce, W. W. (2007). Identification and quantitation of asparagine and citrulline using high-performance liquid chromatography (HPLC). Analytical Chemistry Insights, 2, 31–36.

    Google Scholar 

  • Ciesarova, Z., Kukurova, K., Bednarikova, A., Markova, L., & Baxa, S. (2009). Improvement of cereal product safety by enzymatic way of acrylamide mitigation. Czech Journal of Food Science, 27, 96–98.

    Google Scholar 

  • Claus, A., Weisz, G. M., Kammerer, D. R., Carle, R., & Schieber, A. (2005). A method for the determination of acrylamide in bakery products using ion trap LC–ESI–MS/MS. Molecular Nutrition & Food Research, 49, 918–925.

    Article  CAS  Google Scholar 

  • Claus, A., Weisz, G. M., Schieber, A., & Carle, R. (2006a). Pyrolytic acrylamide formation from purified wheat gluten and gluten-supplemented wheat bread rolls. Molecular Nutrition & Food Research, 50(1), 87–93.

    Article  CAS  Google Scholar 

  • Claus, A., Schreiter, P., Weber, A., Graeff, S., Hermann, W., Claupein, W., et al. (2006b). Influence of agronomic factors and extraction rate on the acrylamide contents in yeast-leavened breads. Journal of Agricultural and Food Chemistry, 54, 8968–8976.

    Article  CAS  Google Scholar 

  • Claus, A., Carle, R., & Schieber, A. (2008). Acrylamide in cereal products: A review. Journal of Cereal Science, 47, 118–133.

    Article  CAS  Google Scholar 

  • De-Wilde, T., De-Meulenaer, B., Mestdagh, F., Govaert, Y., Ooghe, W., Fraselle, S., et al. (2006). Selection criteria for potato tubers to minimize acrylamide formation during frying. Journal of Agricultural and Food Chemistry, 54, 2199–2205.

    Article  CAS  Google Scholar 

  • Edoardo, C., Antonella, F., Iolanda, A., Arda, S., Ozge, C. A., Vural, G., et al. (2009). Effect of flour type on Maillard reaction and acrylamide formation during toasting of bread crisp model systems and mitigation strategies. Food Research International, 42, 1295–1302.

    Article  Google Scholar 

  • Fink, M., Andersson, R., Rosen, J., & Aman, P. (2006). Effect of added asparagine and glycine on acrylamide content in yeast leavened bread. Cereal Chemistry, 83, 218–222.

    Article  CAS  Google Scholar 

  • Fredriksson, H., Tallving, J., & Rosen, J. (2004). Fermentation reduces free asparagine in dough and acrylamide content in bread. Cereal Chemistry, 81, 650–653.

    Article  CAS  Google Scholar 

  • Garcia-Villanova, B., Guerra-Hernández, E., Martínez Gomez, E., & Montilla, J. (1993). Hydroxymethylfurfural and methylfurfural content of selected bakery products. Journal of Agricultural and Food Chemistry, 41, 1254–1255.

    Article  CAS  Google Scholar 

  • Haase, N., Matthaeus, B., & Vosmann, K. (2003). Acrylamide in baked products—state of the art. Getreide Mehl und Brot, 57(3), 180–184.

    CAS  Google Scholar 

  • Hamlet, C. G., Sadd, P. A., & Liang, L. (2008). Correlations between the amounts of free asparagine and saccharides present in commercial cereal flours in the UK and the generation of acrylamide during cooking. Journal of Agriculture and Food Chemistry, 56(15), 6145–6153.

    Article  CAS  Google Scholar 

  • Hogervorst, J. G., Schouten, L. J., Konings, E. J., Goldbohm, R. A., & Van den Brandt, P. A. (2007). A prospective study of dietary acrylamide intake and the risk of endometrial ovarian, and breast cancer. Cancer Epidemiology, Biomarkers & Prevention, 16(11), 2304–2313.

    Article  CAS  Google Scholar 

  • IARC. (1994). Acrylamide. Some industrial chemicals monographs on the evaluation of carcinogen risk to humans. International Agency for Research on Cancer (IARC), 60, 389–433.

    Google Scholar 

  • Indrani, D., Prabhasankar, P., Rajiv, J., & VenkateswaraRao, G. (2003). Scanning electron microscopy, rheological characteristics, and bread-baking performance of wheat-flour dough as affected by enzymes. Journal of Food Science, 68, 2804–2809.

    Article  CAS  Google Scholar 

  • Lindenmeier, M., & Hofmann, T. (2010). Influence of baking conditions and precursor supplementation on the amounts of the antioxidant pronyl-l-lysine in bakery products. Journal of Food Engineering, 99, 239–249.

    Article  Google Scholar 

  • Mohan Kumar, N. S., & Manonmani, H. K. (2012). Survey on acrylamide in some of the food samples in and around Mysore city: India. Asian Journal of Microbiology. Biotechnology & Enviornmental Sciences, 14(1), 149–155.

    Google Scholar 

  • Mohan Kumar, N. S., Ravi, R., & Manonmani, H. K. (2013a). Production and optimization of l-asparaginase from Cladosporium sp. using agricultural residues in solid state fermentation. Industrial Crops and Products, 43, 150–158.

    Google Scholar 

  • Mohan Kumar, N. S., & Manonmani, H. K. (2013b). Purification, characterization and kinetic properties of extracellular l-asparaginase produced by Cladosporium sp. World Journal of Microbiology and Biotechnology, 29, 577–587.

    Google Scholar 

  • Olesen, P. T., Olsen, A., Frandsen, H., Frederiksen, K., Overvad, K., & Tjonneland, A. (2008). Acrylamide exposure and incidence of breast cancer among postmenopausal women in the Danish diet, cancer and health study. International Journal of Cancer, 122(9), 2094–2100.

    Article  CAS  Google Scholar 

  • Ramirez-Jimenez, A. J. (1998). Indicators de las reacciones de pardeamiento químico en productos panarios. Memory of pharmacy degree of licenciate, The University of Granada. Spain.

  • Ramirez-Jimenez, A., Garcia-Villanova, B., & Guerra-Hernandez, E. (2000). Hydroxy-methyl furfural and methylfurfural content of selected bakery products. Food Research International, 33, 833–838.

    Article  CAS  Google Scholar 

  • Ruiz, J. C., Guerra-Hernandez, E., & Garcia-Villanova, B. (2004). Furosine is a useful indicator in pre-baked breads. Journal of the Science of Food and Agriculture, 84, 366–370.

    Article  CAS  Google Scholar 

  • Sadd, P., & Hamlet, C. (2005). The formation of acrylamide in UK cereal products. Advances in Experimental Medicine and Biology, 561, 415–429.

    Article  CAS  Google Scholar 

  • Seiquer, I., Ruiz-Roca, B., Mesias, M., Munoz-Hoyos, A., Galdo, G., Ochoa, J. J., et al. (2008). The antioxidant effect of a diet rich in Maillard reaction products is attenuated after consumption by healthy male adolescents. In vitro and in vivo comparative study. Journal of the Science of Food and Agriculture, 88, 1245–1252.

    Article  CAS  Google Scholar 

  • Somoza, V., Wenzel, E., Lindenmeier, M., Grothe, D., Erbersdobler, H. F., & Hofmann, T. (2005). Influence of feeding malt, bread crust, and a pronylated protein on the activity of chemopreventive enzymes and antioxidative defense parameters in vivo. Journal of Agricultural and Food Chemistry, 53, 8176–8182.

    Article  CAS  Google Scholar 

  • Springer, M., Fischer, T., Lehrack, A., & Freund, W. (2003). Development of acrylamide in baked products. Getride Mehl und Brot, 57, 274–278.

    CAS  Google Scholar 

  • Steel, R. G. D., & Torrie, J. H. (1980). Principles and procedures of statistics. New York: McGraw-Hill.

    Google Scholar 

  • Surdyk, N., Rosen, J., Andersson, R., & Aman, P. (2004). Effects of asparagine, fructose and baking conditions on acrylamide content in yeast-leavened wheat bread. Journal of Agricultural and Food Chemistry, 52, 2047–2051.

    Article  CAS  Google Scholar 

  • Tareke, E., Rydberg, P., Karlsson, P., Eriksson, S., & Tornqvist, M. (2002). Analysis of acrylamide, a carcinogen formed in heated foodstuffs. Journal of Agricultural and Food Chemistry, 50(17), 4998–5006.

    Article  CAS  Google Scholar 

  • Teras, L.M., Zimmermen, S.P., Zyzak, D.V., Tak Lin, P.Y., Stojanovic, M., Sanders, R.A., et al. (2004). Method for the reduction of acrylamide in corn-based foods. Patent US20040265429.

  • Ulbricht, R. J., Northup, S. J., & Thomas, J. A. (1984). A review of 5-hydroxymethylfurfural in parenteral solution. Fundamental and Applied Toxicology, 4, 843–853.

    Article  CAS  Google Scholar 

  • Vass, M., Amrein, T. M., Schonbachler, B., Escher, F., & Amado, R. (2004). Ways to reduce acrylamide formation in cracker products. Czech Journal of Food Science, 22, 19–21.

    CAS  Google Scholar 

  • Weining, H., Shengdi, Y., Qibo, Z., & Michael, T. (2008). Effects of frying conditions and yeast fermentation on the acrylamide content in you-tiao, a traditional Chinese, fried, twisted dough-roll. Food Research International, 41, 918–923.

    Google Scholar 

  • Yasuhara, A., Tanaka, Y., Hengel, M., & Shibamoto, T. (2003). Gas chromatographic investigation of acrylamide formation in browning model systems. Journal of Agricultural and Food Chemistry, 51(14), 3999–4003.

    Article  CAS  Google Scholar 

  • Yaylayan, V. A., & Stadler, R. H. (2005). Acrylamide formation in food: A mechanistic perspective. Journal of AOAC International, 88(1), 262–267.

    CAS  Google Scholar 

  • Zyzak, D. V., Sanders, R. A., Stojanovic, M., Tallmadge, D. H., Eberhart, B. L., Ewald, D. K., et al. (2003). Acrylamide formation mechanism in heated foods. Journal of Agricultural and Food Chemistry, 51(16), 4782–4787.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Director, CFTRI, for providing necessary laboratory facilities. The first author expresses his gratitude and sincere thanks to Council of Scientific and Industrial Research (CSIR), New Delhi, for providing Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. K. Manonmani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohan Kumar, N.S., Shimray, C.A., Indrani, D. et al. Reduction of Acrylamide Formation in Sweet Bread with l-Asparaginase Treatment. Food Bioprocess Technol 7, 741–748 (2014). https://doi.org/10.1007/s11947-013-1108-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-013-1108-6

Keywords

Navigation