Skip to main content
Log in

Combined Drying Technologies for High-Quality Kiwifruit Powder Production

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Freeze-drying is a dehydration technique which, from a sensory, nutritional and functional point of view, provides high-quality powder products. Nevertheless, both long processing times and high economic costs are required. In this study, pre-drying the samples using hot air or microwave has been considered in order to reduce the initial product’s water content thereby shortening the freeze-drying time so as to obtain high value products at a reduced cost. The effect of dehydration pre-treatments on the kinetics, antioxidant activity and solubility of freeze-dried kiwifruit products was evaluated. Nine different thin-layer semi-theoretical models were used to fit the drying data. According to the obtained results, the pre-treated samples exhibited higher drying rates than the fresh sample. In turn, the dehydration pre-treatments used did not affect the solubility or the antioxidant activity of the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agnieszka, C., & Andrzej, L. (2010). Rehydration and sorption properties of osmotically pretreated freeze-dried strawberries. Journal of Food Engineering, 97, 267–274.

    Article  CAS  Google Scholar 

  • Akpinar, E. K. (2006). Determination of suitable thin layer drying curve model for some vegetables and fruits. Journal of Food Engineering, 73, 75–84.

    Article  Google Scholar 

  • Antunes, M. D. C., Dandlen, S., Cavaco, A. M., & Miguel, G. (2010). Effects of postharvest application of 1-mcp and postcutting dip treatment on the quality and nutritional properties of fresh-cut kiwifruit. Journal of Agricultural and Food Chemistry, 58, 6173–6181.

    Article  CAS  Google Scholar 

  • Beekwilder, J., Jonker, H., Meesters, P., Hall, R. D., Van der Meer, I. M., & Vos, C. H. R. (2005). Antioxidants in raspberry: on-line analysis links antioxidant activity to a diversity of individual metabolites. Journal of Agricultural and Food Chemistry, 53, 3313–3320.

    Article  CAS  Google Scholar 

  • Cano, P. (1991). HPLC separation of chlorophyll and carotenoid pigments of four kiwi fruit cultivars. Journal of Agricultural and Food Chemistry, 39, 1786–1791.

    Article  CAS  Google Scholar 

  • Clary, C. D., Mejia-Meza, E., Wang, S., & Petrucci, V. E. (2007). Improving grape quality using microwave vacuum drying associated with temperature control. Journal of Food Science, 72(1), 23–28.

    Article  Google Scholar 

  • Contreras, C., Martín-Esparza, M. E., Chiralt, A., & Martínez-Navarrete, N. (2008). Influence of microwave application on convective drying: effects on drying kinetics, and optical and mechanical properties of apple and strawberry. Journal of Food Engineering, 88, 55–64.

    Article  Google Scholar 

  • Contreras, C., Martín-Esparza, M. E., Martínez-Navarrete, N., & Chiralt, A. (2007). Influence of osmotic pre-treatment and microwave application on properties of air dried strawberry related to structural changes. European Food Research and Technology, 224, 499–504.

    Article  CAS  Google Scholar 

  • Cozic, C., Picton, L., Garda, M., Marlhoux, F., & Le Cerf, D. (2009). Analysis of arabic gum: study of degradation and water desorption processes. Food Hydrocolloids, 23, 1930–1934.

    Article  CAS  Google Scholar 

  • Cubero, N., Monferrer, A., & Villalta, J. (2002). Aditivos alimentarios. Madrid: A. Madrid Vicente.

    Google Scholar 

  • Daoussi, R., Vessot, S., Andrieu, J., & Monnier, O. (2009). Sublimation kinetics and sublimation end-point times during freeze-drying of pharmaceutical active principle with organic co-solvent formulations. Chemical Engineering Research and Design, 87, 899–907.

    Article  CAS  Google Scholar 

  • De Ancos, B., Cano, M. P., Hernández, A., & Monreal, M. (1999). Effects of microwave heating on pigment composition and color of fruit purees. Journal of the Science of Food and Agriculture, 79, 663–670.

    Article  Google Scholar 

  • Dewanto, V., Wu, X., Adom, K., & Liu, R. (2002). Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. Journal of Agricultural and Food Chemistry, 50, 3010–3014.

    Article  CAS  Google Scholar 

  • Doymaz, I. (2004). Effect of pre-treatments using potassium metabisulphide and alkaline ethyl oleate in the drying kinetics of apricots. Biosystems Engineering, 89(3), 281–287.

    Article  Google Scholar 

  • Doymaz, I. (2006). Drying kinetics of black grapes treated with different solutions. Journal of Food Engineering, 76, 212–217.

    Article  CAS  Google Scholar 

  • Doymaz, I., & Pala, M. (2003). The thin-layer drying characteristics of corn. Journal of Food Engineering, 60, 125–130.

    Article  Google Scholar 

  • Du, G., Li, M., Ma, F., & Liang, D. (2009). Antioxidant capacity and the relationship with polyphenol and vitamin C in Actinidia fruits. Food Chemistry, 113, 557–562.

    Article  CAS  Google Scholar 

  • Fabra, M. J., Talens, P., Moraga, G., & Martínez-Navarrete, N. (2009). Sorption isotherm and state diagram of grapefruit as a tool to improve product processing and stability. Journal of Food Engineering, 93, 52–58.

    Article  CAS  Google Scholar 

  • Fahloul, D., Lahbari, M., Benmoussa, H., & Mezdour, S. (2009). Effect of osmotic dehydration on the freeze drying kinetics of apricots. Journal of Food, Agriculture and Environment, 7, 117–121.

    CAS  Google Scholar 

  • Fúster, C., Préstamo, G., & Cano, M. P. (1994). Drip loss, peroxidase and sensory changes in kiwi fruit slices during frozen storage. Journal of the Science of Food and Agriculture, 64, 23–29.

    Article  Google Scholar 

  • Fyfe, K. N., Kravchuk, O., Le, T., Deeth, H. C., Nguyen, A. V., & Bhandari, B. (2011). Storage induced changes to high protein powders: influence on surface properties and solubility. Journal of Food Science and Agriculture, 91, 2566–2575.

    Article  CAS  Google Scholar 

  • Gabas, A. L., Telis, V. R. N., Sobral, P. J. A., & Telis-Romero, J. (2007). Effect of maltodextrin and arabic gum in water vapor sorption thermodynamic properties of vacuum dried pineapple pulp powder. Journal of Food Engineering, 82, 246–252.

    Article  CAS  Google Scholar 

  • Ghosal, S., Indira, T. N., & Bhattacharya, S. (2010). Agglomeration of a model food powder: effect of maltodextrin and gum Arabic dispersions on flow behavior and compacted mass. Journal of Food Engineering, 96, 222–228.

    Article  CAS  Google Scholar 

  • Huang, L., Zhang, W., Mujumdar, A. S., & Lim, R. (2011). Comparison of four drying methods for re-structured mixed potato with apple chips. Journal of Food Engineering, 103, 279–284.

    Article  Google Scholar 

  • Igual, M., García-Martínez, E., Camacho, M. M., & Martínez-Navarrete, N. (2010). Effect of thermal treatment and storage on the stability of organic acids and the functional value of grapefruit juice. Food Chemistry, 118, 291–299.

    Article  CAS  Google Scholar 

  • Igual, M., García-Martínez, E., Martín-Esparza, M. E., & Martínez-Navarrete, N. (2012). Effect of processing on the drying kinetics and the functional value of dried apricot. Food Research International, 47, 284–290.

    Article  Google Scholar 

  • Jaya, S., & Das, H. (2009). Glass transition and sticky point temperatures and stability/mobility diagram of fruit powders. Food Bioprocess Technology, 2, 89–95.

    Article  CAS  Google Scholar 

  • Karathanos, V. T., & Belessiotis, V. G. (1999). Application of thin-layer equation to drying data of fresh and semi-dried fruits. Journal of Agricultural Engineering Research, 74, 355–361.

    Article  Google Scholar 

  • Lu, X., Wang, J., Al-Qadiri, M., Ross, C. F., Powers, J. R., Tang, J., & Rasco, B. A. (2011). Determination of total phenolic content and antioxidant capacity of onion (Allium cepa) and shallot (Allium oschaninii) using infrared spectroscopy. Food Chemistry, 129, 637–644.

    Article  CAS  Google Scholar 

  • Marques, L. G., Prado, M. M., & Freire, J. T. (2009). Rehydration characteristics of freeze-dried tropical fruits. LWT—Food Science and Technology, 42, 1232–1237.

    CAS  Google Scholar 

  • Maskan, M. (2001). Drying, shrinkage and rehydration characteristics of kiwifruits during hot air and microwave drying. Journal of Food Engineering, 48, 177–182.

    Article  Google Scholar 

  • Maskan, M., & Gögus, F. (1998). Sorption isotherms and drying characteristics of mulberry (Morus alba). Journal of Food Engineering, 37, 437–449.

    Article  Google Scholar 

  • Menlik, T., Özdemir, M. B., & Kirmaci, V. (2010). Determination of freeze-drying behaviours of apples by artificial neural network. Expert Systems with Applications, 37, 7669–7677.

    Article  Google Scholar 

  • Mimouni, A., Deeth, H. C., Whittaker, A. K., Gidley, M. J., & Bhandari, B. R. (2009). Rehydration process of milk protein concentrate powder monitored by static light scattering. Food Hydrocolloids, 23, 1958–1965.

    Article  CAS  Google Scholar 

  • Mosquera, L. H., Moraga, G., & Martínez-Navarrete, N. (2010). Effect of maltodextrin on the stability of freeze-dried borojó (Borojoa patinoi Cuatrec.) powder. Journal of Food Engineering, 97, 72–78.

    Article  CAS  Google Scholar 

  • Mosquera, L. H., Moraga, G., & Martínez-Navarrete, N. (2012). Critical water activity and critical water content of freeze-dried strawberry powder as affected by maltodextrin and arabic gum. Food Research International, 47, 201–206.

    Article  CAS  Google Scholar 

  • Panchariya, P. C., Popovic, D., & Sharma, A. L. (2002). Thin-layer modeling of black tea drying process. Journal of Food Engineering, 52, 349–357.

    Article  Google Scholar 

  • Pardo, J. M., & Leiva, D. A. (2010). Effects of different pre-treatments on energy consumption during freeze drying of pineapple pieces. Interciencia, 35(12), 934–938.

    Google Scholar 

  • Pina-Pérez, M. C., Rodrigo-Aliaga, D., Saucedo-Reyes, D., & Martínez-López, A. (2007). Pressure inactivation kinetics of Enterobacter sakazakii in infant formula milk. Journal of Food Protection, 70(10), 2281–2289.

    Google Scholar 

  • Prabhanjan, D. G., Ramaswamy, H. S., & Raghavan, G. S. V. (1995). Microwave-assisted convective air drying of thin layer carrots. Journal of Food Engineering, 25, 283–293.

    Article  Google Scholar 

  • Schokker, E. P., Church, J. S., Mata, J. P., Gilbert, E. P., Puvanenthiran, A., & Udabage, P. (2011). Reconstitution properties of micellar casein powder: effects of composition and storage. International Dairy Journal, 21, 877–886.

    Article  CAS  Google Scholar 

  • Simal, S., Femenia, A., Garau, M. C., & Roselló, C. (2005). Use of exponential, Page’s and diffusional models to simúlate the drying kinetics of kiwi fruit. Journal of Food Engineering, 66, 323–328.

    Article  Google Scholar 

  • Therdthai, N., & Zhou, W. (2009). Characterization of microwave vacuum drying and hot air drying of meant leaves (Mentha cordifolia Opiz ex Fresen). Journal of Food Engineering, 91, 482–489.

    Article  Google Scholar 

  • Togrul, I. T., & Pehlivan, D. (2003). Modelling of drying kinetics of single apricot. Journal of Food Engineering, 58, 23–32.

    Article  Google Scholar 

  • Troygot, O., Saguy, I. S., & Wallach, R. (2011). Determination of characteristic curve from water sorption isotherms. Journal of Food Engineering, 105, 408–415.

    Article  Google Scholar 

  • Turkmen, N., Sari, F., & Velioglu, S. (2005). The effect of cooking methods on total phenolics and antioxidant activity of selected green vegetables. Food Chemistry, 93, 713–718.

    Article  CAS  Google Scholar 

  • Vadivambal, R., & Jayas, D. S. (2007). Changes in quality of microwave treated agricultural products. Biosystems Engineering, 98, 1–16.

    Article  Google Scholar 

  • Xiang, J., Hey, J. M., Liedtke, V., & Wang, D. Q. (2004). Investigation of freeze-drying sublimation rates using a freeze-drying microbalance technique. International Journal of Pharmaceutics, 279, 95–105.

    Article  CAS  Google Scholar 

  • Zhai, S., Taylor, R., Sanches, R., & Slater, N. K. H. (2003). Measurement of lyophilisation primary drying rates by freeze-drying microscopy. Chemical Engineering Science, 58, 2313–2323.

    Article  CAS  Google Scholar 

  • Zhang, M., Tang, J., Mujumdarc, A. S., & Wang, S. (2006). Trends in microwave related drying of fruits and vegetables. Trends in Food Science and Technology, 17, 524–534.

    Article  CAS  Google Scholar 

  • Zolfaghari, M., Sahari, A., Barzegar, M., & Samadloiy, H. (2010). Physicochemical and enzymatic properties of five kiwifruit cultivars during cold storage. Food Bioprocess Technology, 3, 239–246.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Ministerio de Educación y Ciencia and the Generalitat Valenciana for the financial support given throughout the Projects AGL 2010-22176 and ACOMP/2012/161, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuria Martínez-Navarrete.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benlloch-Tinoco, M., Moraga, G., del Mar Camacho, M. et al. Combined Drying Technologies for High-Quality Kiwifruit Powder Production. Food Bioprocess Technol 6, 3544–3553 (2013). https://doi.org/10.1007/s11947-012-1030-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-012-1030-3

Keywords

Navigation