Skip to main content
Log in

Quality Changes of Dehydrated Restructured Fish Product from Silver Carp (Hypophthalmichthys molitrix) as Affected by Drying Methods

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Restructured fish slices from silver carp (Hypophthalmichthys molitrix) were dried using air drying (AD), freeze drying (FD), and vacuum drying (VD) (4 mm thickness) and microwave-vacuum drying (MVD) (2, 4, 6, and 8 mm thickness). Quality attributes of the dried products were compared in terms of their rehydrated characteristics, change in dimensions, color, texture, sensory values before and after rehydration, and change in volatile compounds. AD, FD, and VD resulted in the different levels of shrinkage while MVD caused some expansion in diameter and thickness in the 4-, 6-, and 8-mm-thickness samples. Rehydration caused significant swelling in AD, FD, and VD products (p < 0.05) but insignificant change in MVD products (p > 0.05). Drying methods significantly affected the color and texture of both dried and rehydrated products (p < 0.05), but slice thickness had no significant effect on the color in MVD products (p > 0.05). MVD products rehydrated faster and had higher rehydration ratio as well as lower water hold capacity, hardness, springiness, cohesiveness, and chewiness than others. In sensory evaluation, MVD products alone exhibited acceptable crispness and favorable odor. The rehydrated dried products were acceptable by the sensory panelists and were preferred in the order: FD, VD, AD, MVD. Gas chromatography-mass spectrometry revealed that drying significantly decreased the n-alkanals and 1-octen-3-ol content (p < 0.05) and produced new aldehydes including 2-methyl-propanal, 3-methyl-butanal, and furfural in MVD products. This study demonstrated that drying restructured fish meat can be potentially used to develop the new dried fish products using optimal drying conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AD:

Air drying

FD:

Freeze drying

GC-MS:

Gas chromatography-mass spectrometry

MVD:

Microwave-vacuum drying

RR:

Rehydration ratio

VD:

Vacuum drying

WHC:

Water holding capacity

References

  • Andrés, A., Rodríguez-Barona, S., Barat, J. M., & Fito, P. (2005). Salted cod manufacturing: Influence of salting procedure on process yield and product characteristics. Journal of Food Engineering, 69, 467–471.

    Article  Google Scholar 

  • AOAC. (1984). Official methods of analysis of the Association of Official Analytical Chemists (14th ed.) USA, Washington, DC.

  • Argyropoulos, D., Heindl, A., & Müller, J. (2011). Assessment of convection, hot-air combined with microwave-vacuum and freeze-drying methods for mushrooms with regard to product quality. International Journal of Food Science and Technology, 46, 333–342.

    Article  CAS  Google Scholar 

  • Arikan, M. F., Ayhan, Z., Soysal, Y., & Esturk, O. (2011). Drying characteristics and quality parameters of microwave-dried grated carrots. Food and Bioprocess Technology. doi:10.1007/s11947-011-0682-8 (in press).

  • Arimi, J. M., Duggan, E., O’Riordan, E. D., O’Sullivan, M., & Lyng, J. G. (2010). Effect of moisture content and water mobility on microwave expansion of imitation cheese. Food Chemistry, 121, 509–516.

    Article  CAS  Google Scholar 

  • Aversa, M., Curcio, S., Calabrò, V., & Iorio, G. (2012). Experimental evaluation of quality parameters during drying of carrot samples. Food and Bioprocess Technology, 5, 118–129.

    Article  Google Scholar 

  • Bai-Ngew, S., Therdthai, N., & Dhamvithee, P. (2011). Characterization of microwave vacuum-dried durian chips. Journal of Food Engineering, 104, 114–122.

    Article  Google Scholar 

  • Balange, A. K., & Benjakul, S. (2009). Effect of oxidised tannic acid on the gel properties of mackerel (Rastrelliger kanagurta) mince and surimi prepared by different washing processes. Food Hydrocolloids, 23, 1693–1701.

    Article  CAS  Google Scholar 

  • Barrera, A. M., Ramirez, J. A., Gonzalez-Cabriales, J. J., & Vazquez, M. (2002). Effect of pectins on the gelling properties of surimi from silver carp. Food Hydrocolloids, 16, 441–447.

    Article  CAS  Google Scholar 

  • Bellagha, S., Sahli, A., Farhat, A., Kechaou, N., & Glenz, A. (2007). Studies on salting and drying of sardine (Sardinella aurita): Experimental kinetics and modeling. Journal of Food Engineering, 78, 947–952.

    Article  Google Scholar 

  • Calín-Sánchez, Á., Figiel, A., Hernández, F., Melgarejo, P., Lech, K., & Carbonell-Barrachina, Á. A. (2012). Chemical composition, antioxidant capacity, and sensory quality of Pomegranate (Punica granatum L.) Arils and rind as affected by drying method. Food and Bioprocess Technology. doi:10.1007/s11947-011-0682-8 (in press).

  • Chong, C. H., Law, C. L., Cloke, M., Hii, C. L., Abdullah, L. C., & Daud, W. R. W. (2008). Drying kinetics and product quality of dried Chempedak. Journal of Food Engineering, 88, 522–527.

    Article  Google Scholar 

  • Couso, I., Alvarez, C., Teresa Solas, M., Barba, C., & Tejada, M. (1998). Morphology of starch in surimi gels. Zeitschrift für Lebensmitteluntersuchung und -Forschung A, 206, 38–43.

    Article  CAS  Google Scholar 

  • Cui, Z., Xu, S. Y., & Sun, D. W. (2003). Dehydration of garlic slices by combined microwave-vacuum and air drying. Drying Technology, 21, 1173–1184.

    Article  Google Scholar 

  • Cui, Z., Li, C., Song, C., & Song, Y. (2008a). Combined microwave-vacuum and freeze drying of carrot and apple chips. Drying Technology, 26, 1517–1523.

    Article  CAS  Google Scholar 

  • Cui, Z., Sun, L. J., Chen, W., & Sun, D. W. (2008b). Preparation of dry honey by microwave-vacuum drying. Journal of Food Engineering, 84, 582–590.

    Article  Google Scholar 

  • Djendoubi, N., Boudhrioua, N., Bonazzi, C., & Kechaoua, N. (2009). Drying of sardine muscles: Experimental and mathematical investigations. Food and Bioproducts Processing, 87, 115–123.

    Article  Google Scholar 

  • Durance, T. E., & Wang, J. H. (2002). Energy consumption, density, and rehydration rate of vacuum microwave- and hot-air convection-dehydrated tomatoes. Journal of Food Science, 67, 2212–2216.

    Article  CAS  Google Scholar 

  • Erle, U., & Schubert, H. (2001). Combined osmotic and microwave vacuum dehydration of apples and strawberries. Journal of Food Engineering, 49, 193–199.

    Article  Google Scholar 

  • Figiel, A. (2009). Drying kinetics and quality of vacuum-microwave dehydrated garlic cloves and slices. Journal of Food Engineering, 94, 98–104.

    Article  Google Scholar 

  • Figiel, A. (2010). Drying kinetics and quality of beetroots dehydrated by combination of convective and vacuum-microwave methods. Journal of Food Engineering, 98, 461–470.

    Article  Google Scholar 

  • Gonçalves, B., Silva, A. P., Moutinho-Pereira, J., Bacelar, B., Rosa, E., & Meyer, A. S. (2007). Effect of ripeness and postharvest storage on the evolution of colour and anthocyanins in cherries (Prunus avium L.). Food Chemistry, 103, 976–984.

    Article  Google Scholar 

  • Goulas, A., & Kontominas, M. (2005). Effect of salting and smoking-method on the keeping quality of chub mackerel (Scomber japonicus): Biochemical and sensory attributes. Food Chemistry, 93, 511–520.

    Article  CAS  Google Scholar 

  • Guizani, N., Al-Shoukri, A. O., Mothershaw, A., & Rahman, M. S. (2008). Effects of salting and drying on shark (Carcharhinus sorrah) meat quality characteristics. Drying Technology, 26, 705–713.

    Article  CAS  Google Scholar 

  • Gwak, H. J., & Eun, J. B. (2010). Changes in the chemical characteristics of Gulbi, salted and dried yellow corvenia, during drying at different temperatures. Journal of Aquatic Food Product Technology, 19, 274–283.

    Article  CAS  Google Scholar 

  • Hu, Q. G., Zhang, M., Mujumdar, A. S., Du, W. H., & Sun, J. C. (2006a). Effects of different drying methods on the quality changes of granular edamame. Drying Technology, 24, 1025–1032.

    Article  Google Scholar 

  • Hu, Q. G., Zhang, M., Mujumdar, A. S., Xiao, G. N., & Sun, J. C. (2006b). Drying of edamames by hot air and vacuum microwave combination. Journal of Food Engineering, 77, 977–982.

    Article  Google Scholar 

  • Hu, Y. J., Xia, W. S., & Ge, C. R. (2008). Characterization of fermented silver carp sausages inoculated with mixed starter culture. Lebensmittel-Wissenschaft und Technologie, 41, 730–738.

    Article  CAS  Google Scholar 

  • Jain, D., & Pathare, P. B. (2007). Study the drying kinetics of open sun drying of fish. Journal of Food Engineering, 78, 1315–1319.

    Article  Google Scholar 

  • Jaya, S., & Durance, T. D. (2009). Compressive characteristics of cellular solids produced using vacuum-microwave, freeze, vacuum and hot air dehydration methods. Journal of Porous Material, 16, 47–58.

    Article  CAS  Google Scholar 

  • Kilic, A. (2009). Low temperature and high velocity (LTHV) application in drying: Characteristics and effects on the fish quality. Journal of Food Engineering, 91, 173–182.

    Article  CAS  Google Scholar 

  • Kituu, G. M., Shitanda, D., Kanali, C. L., Mailutha, J. T., Njoroge, C. K., Wainaina, J. K., et al. (2010). Thin layer drying model for simulating the drying of tilapia fish (Oreochromis niloticus) in a solar tunnel dryer. Journal of Food Engineering, 98, 325–331.

    Article  Google Scholar 

  • Krokida, M. K., & Philippopoulos, C. (2005). Rehydration of dehydrated foods. Drying Technology, 23, 799–830.

    Article  CAS  Google Scholar 

  • Leiker, M., & Adamska, M. A. (2004). Energy efficiency and drying rates during vacuum microwave drying of wood. Holz Roh Werkst, 62, 203–208.

    Article  Google Scholar 

  • Lin, T. M., Durance, T. D., & Scaman, C. H. (1998). Characterization of vacuum microwave, air and freeze dried carrot slices. Food Research International, 31, 111–117.

    Article  Google Scholar 

  • Lin, T. M., Timothy, D. D., & Scaman, C. H. (1999). Physical and sensory properties of vacuum microwave dehydrated shrimp. Journal of Aquatic Food Product Technology, 8, 41–53.

    Article  Google Scholar 

  • Liu, C. H., Zheng, X. Z., Jia, S. H., Ding, N. Y., & Gao, X. C. (2009). Comparative experiment on hot-air and microwave-vacuum drying and puffing of blue honeysuckle snack. International Journal of Food Engineering, 5, article 4.

    Google Scholar 

  • Liu, C. H., Zheng, X. Z., Shi, J., Xue, S. J., Lan, Y., & Jia, S. (2010). Optimising microwave vacuum puffing for blue honeysuckle snacks. International Journal of Food Science and Technology, 45, 506–511.

    Article  CAS  Google Scholar 

  • Lu, L., Tang, J., & Ran, X. (1999). Temperature and moisture changes during microwave drying of sliced food. Drying Technology, 17, 414–431.

    Article  Google Scholar 

  • Luo, Y. K., Kuwahara, M., Kaneniwa, Y., Murata, Y., & Yokoyama, M. (2001). Comparison of gel properties of surimi from Alaska Pollock and three freshwater fish species: Effects of thermal processing and protein concentration. Journal of Food Science, 66, 548–554.

    Article  CAS  Google Scholar 

  • Luo, Y. K., Shen, H. X., Pan, D. D., & Bu, G. H. (2008). Gel properties of surimi from silvercarp (Hypophthalmichthys molitrix) as affected by heat treatment and soy protein isolate. Food Hydrocolloids, 22, 1513–1519.

    Article  CAS  Google Scholar 

  • Maneerote, J., Noomhorm, A., & Takhar, P. S. (2009). Optimization of processing conditions to reduce oil uptake and enhance physico-chemical properties of deep fried rice crackers. Lebensmittel-Wissenschaft und Technologie, 42, 805–812.

    Article  CAS  Google Scholar 

  • Mao, L., & Wu, T. (2007). Gelling properties and lipid oxidation of kamaboko gels from grass carp (Ctenopharyngodon idellus) influenced by chitosan. Journal of Food Engineering, 82, 128–134.

    Article  CAS  Google Scholar 

  • Markowski, M., Bondaruk, J., & Błaszczak, W. (2009). Rehydration behavior of vacuum-microwave-dried potato cubes. Drying Technology, 27, 296–305.

    Article  Google Scholar 

  • Mujaffar, S., & Sankat, C. K. (2005). The air drying behaviour of shark fillets. Canadian Biosystems Engineering, 47, 11–21.

    Google Scholar 

  • Mujumdar, A. S. (2006). Handbook of industrial drying (3rd ed.). Boca Raton, Florida, USA: CRC Press.

    Book  Google Scholar 

  • Nowsad, A. A., Khan, A. H., Kamal, M., Kanoh, S., & Niwa, E. (1999). The effects of heating and washing on the gelling properties of tropical major carp muscle. Journal of Aquatic Food Product Technology, 8, 5–23.

    Article  Google Scholar 

  • Ramírez, J. A., Del Ángel, A., Uresti, R. M., Velazquez, G., & Vázquez, M. (2007). Low-salt restructured products from striped mullet (Mugil cephalus) using microbial transglutaminase or whey protein concentrate as additives. Food Chemistry, 102, 243–249.

    Article  Google Scholar 

  • Ressing, H., Ressing, M., & Durance, T. (2007). Modelling the mechanisms of dough puffing during vacuum microwave drying using the finite element method. Journal of Food Engineering, 82, 498–508.

    Article  Google Scholar 

  • SCT 3701–2003. (2003). China aquatic product standard: Frozen surimi products (2nd ed.). Beijing: Ministry of Agriculture of the People’s Republic of China.

    Google Scholar 

  • Setiady, D., Rasco, B., Younce, F., & Clary, C. (2009). Rehydration and sensory properties of dehydrated russet potatoes (Solanum tuberosum) using microwave vacuum, heated air, or freeze dehydration. Drying Technology, 27, 1116–1122.

    Article  CAS  Google Scholar 

  • Sham, P. W. Y., Scaman, C. H., & Durance, T. D. (2001). Texture of vacuum microwave dehydrated apple chips as affected by calcium pretreatment, vacuum level and apple variety. Journal of Food Science, 66, 1341–1347.

    Article  CAS  Google Scholar 

  • Song, X. J., Zhang, M., Mujumdar, A. S., & Fan, L. P. (2009). Drying characteristics and kinetics of vacuum microwave-dried potato slices. Drying Technology, 27, 969–974.

    Article  Google Scholar 

  • Therdthai, N., & Zhou, W. (2009). Characterization of microwave vacuum drying and hot air drying of mint leaves (Mentha cordifolia Opiz ex Fresen). Journal of Food Engineering, 91, 482–489.

    Article  Google Scholar 

  • Thuwapanichayanan, R., Prachayawarakorn, S., Kunwisawa, J., & Soponronnarit, S. (2011). Determination of effective moisture diffusivity and assessment of quality attributes of banana slices during drying. Lebensmittel-Wissenschaft und Technologie, 44, 1502–1510.

    Article  CAS  Google Scholar 

  • Uribe, E., Miranda, M., Vega-Gálvez, A., Quispe, I., Clavería, R., & Di Scala, K. (2011). Mass transfer modelling during osmotic dehydration of jumbo squid (Dosidicus gigas): Influence of temperature on diffusion coefficients and kinetic parameters. Food and Bioprocess Technology, 4, 320–326.

    Article  Google Scholar 

  • Varlet, V., Prost, C., & Serot, T. (2007). Volatile aldehydes in smoked fish: analysis methods, occurrence and mechanisms of formation. Food Chemistry, 105, 1536–1556.

    Article  CAS  Google Scholar 

  • Vega-Gálvez, A., Miranda, M., Clavería, R., Quispe, I., Vergara, J., Uribe, E., et al. (2011). Effect of air temperature on drying kinetics and quality characteristics of osmo-treated jumbo squid (Dosidicus gigas). Lebensmittel-Wissenschaft und Technologie, 44, 16–23.

    Article  Google Scholar 

  • Wang, X., & Chen, J. (2005). Analysis of flavors in silver carp meat by headspace solid phase microextraction combined with GC-MS. Journal of Shanghai Fisheries University, 14, 176–180.

    CAS  Google Scholar 

  • Wang, X., Hirata, T., Fukuda, Y., Kinoshita, M., & Sakaguchi, M. (2002). Acceptability comparison of kamaboko gels derived from silver carp surimi and from walleye Pollock surimi between the Chinese and Japanese. Fish Science, 68, 165–169.

    Article  CAS  Google Scholar 

  • Wang, Y., Zhang, M., & Mujumdar, A. S. (2011a). Trends in processing technologies for dried aquatic products. Drying Technology, 29, 382–394.

    Article  Google Scholar 

  • Wang, Y., Zhang, M., & Mujumdar, A. S. (2011b). Convective drying kinetics and physical properties of silver carp (Hypophthalmichthys molitrix) fillets. Journal of Aquatic Food Product Technology, 20, 361–378.

    Article  CAS  Google Scholar 

  • Wu, T., & Mao, L. C. (2008). Influences of hot air drying and microwave drying on nutritional and odorous properties of grass carp (Ctenopharyngodon idellus) fillets. Food Chemistry, 110, 647–653.

    Article  CAS  Google Scholar 

  • Yousif, A. N., Scaman, C. H., Durance, T. D., & Girard, B. (1999). Flavor volatiles and physical properties of vacuum-microwave and air-dried sweet basil (Ocimum basilicum L.). Journal of Agricultural and Food Chemistry, 47, 4777–4781.

    Article  CAS  Google Scholar 

  • Yousif, A. N., Durance, T. D., Scaman, C. H., & Girard, B. (2000). Headspace volatiles and physical characteristics of vacuum-microwave, air, and freeze-dried oregano (Lippia berlandieri Schauer). Journal of Food Science, 65, 926–930.

    Article  CAS  Google Scholar 

  • Zhang, M., Tang, J. M., & Mujumdar, A. S. (2006). Trends in microwave-related drying of fruits and vegetables. Trends in Food Science & Technology, 17, 524–534.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors expressed their appreciation to China High-Tech (863) Plan for supporting our research work under contract no. 2011AA100802. The authors also thanked Jiangsu Shanshui Food Company, China, for supplying the equipments related.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Zhang, M., Mujumdar, A.S. et al. Quality Changes of Dehydrated Restructured Fish Product from Silver Carp (Hypophthalmichthys molitrix) as Affected by Drying Methods. Food Bioprocess Technol 6, 1664–1680 (2013). https://doi.org/10.1007/s11947-012-0812-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-012-0812-y

Keywords

Navigation