Skip to main content
Log in

Volatile Composition of Macedonian and Hungarian Wines Assessed by GC/MS

  • Communication
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The volatile composition of eight varietal wines Vranec, Merlot, Cabernet Sauvignon, Temjanika and Chardonnay from the Republic of Macedonia, and Portugieser, Kékfrankos and Tokaji Aszú from Hungary has been characterized by means of gas chromatography/mass spectrometry technique. The wine volatile compounds were extracted in dichloromethane, and the extracts were concentrated under nitrogen. Forty-four volatile compounds have been identified mainly using the NIST mass spectral library and by comparison with the available standards used for quantification as well. Differences between the wines were noted for a number of compounds, such as a higher concentration of 1-pentanol and 2-phenyl ethanol in the red wines. Monoterpenes, linalool and terpineol were detected only in the white wines, Chardonnay and Tokaji. Macedonian red wines were characterized by a higher level of alcohols, while the Hungarian wines contained a higher amount of esters, fatty acids and lactones. A statistical treatment including one-way ANOVA, followed by a Tukey’s test has been performed in order to ascertain possible significant differences between the wines studied, and principal component analysis to study the possible grouping of the wines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Andujar-Ortiz, I., Moreno-Arribas, M. V., Martín-Álvarez, P. J., & Pozo-Bayón, M. A. (2009). Analytical performance of three commonly used extraction methods for the gas chromatography–mass spectrometry analysis of wine volatile compounds. Journal of Chromatography A, 1216, 7351–7357.

    Article  CAS  Google Scholar 

  • Belisario-Sánchez, Y. Y., Taboada-Rodríguez, A., Marín-Iniesta, F., Iguaz-Gainza, A., & López-Gómez, A. (2011). Aroma recovery in wine dealcoholization by SCC distillation. Food and Bioprocess Technology. doi:10.1007/s11947-011-0574-y.

  • Bueno, J. E., Peinado, R., Moreno, J., Medina, M., Moyano, L., & Zea, L. (2003). Selection of volatile aroma compounds by statistical and enological criteria for analytical differentiation of musts and wines of two grape varieties. Journal of Food Science, 68, 158–163.

    Article  CAS  Google Scholar 

  • Bureau, S., Razungles, A., & Baumes, R. (2000). The aroma of muscat of Frogtignan grapes: Effect of the light environment of vine or bunch on volatiles and glycoconjugates. Journal of the Science of Food and Agriculture, 80, 2012–2020.

    Article  CAS  Google Scholar 

  • Castro-Vázquez, L., Alañón, M. E., Calvo, E., Cejudo, M. J., Díaz-Maroto, M. C., & Pérez-Coello, M. S. (2011). Volatile compounds as markers of ageing in Tempranillo red wines from La Mancha D.O. stored in oak wood barrels. Journal of Chromatography A, 1218, 4910–4917.

    Article  Google Scholar 

  • Chatonnet, P., Dubourdieu, D., Boidron, J., & Lavigne, V. (1993). Synthesis of volatile phenols by Saccharomyces cerevisiae in wines. Journal of the Science of Food and Agriculture, 62, 191–202.

    Article  CAS  Google Scholar 

  • Chen, E. C. H. (1978). The relative contribution of Ehrlich and biosynthetic pathways to the formation of fusel alcohols. Journal of the American Society of Brewing Chemists, 35, 39–43.

    Google Scholar 

  • Cheynier, V. F., Rigaud, J., Souquet, J. M., Barillère, J. M., & Moutounet, M. (1989). Effect of pomace contact and hyperoxidation on the phenolic composition and quality of Grenache and Chardonnay wines. American Journal of Enology and Viticulture, 40, 36–42.

    Google Scholar 

  • Coelho, E., Coimbra, M. A., Nogueira, J. M. F., & Rocha, S. M. (2009). Quantification approach for assessment of sparkling wine volatiles from different soils, ripening stages, and varieties by stir bar sorptive extraction with liquid desorption. Analytica Chimica Acta, 635, 214–221.

    Article  CAS  Google Scholar 

  • Daudt, C. E., & Ough, C. S. (1973). Variations in some volatile acetate esters formed during grape juice fermentation. Effects of fermentation temperature, SO2, yeast strain, and grape variety. American Journal of Enology and Viticulture, 24, 130–135.

    CAS  Google Scholar 

  • Díez, J., Domínguez, C., Guillén, D. A., Veas, R., & Barroso, C. G. (2004). Optimisation of stir bar sorptive extraction for the analysis of volatile phenols in wines. Journal of Chromatography A, 1025, 263–267.

    Article  Google Scholar 

  • Epifanio, S., Gutierrez, A., Santamaría, M.-P., & López, R. (1999). The influence of enological practices on the selection of wild yeast strains in spontaneous fermentation. American Journal of Enology and Viticulture, 50(2), 219–224.

    CAS  Google Scholar 

  • Fenoll, J., Manso, A., Hellín, P., Ruiz, L., & Flores, P. (2009). Changes in the aromatic composition of the Vitis vinifera grape Muscat Hamburg during ripening. Food Chemistry, 114, 420–428.

    Article  CAS  Google Scholar 

  • Gonzalez-Alvarez, M., Gonzalez-Barreiro, C., Cancho-Grande, B., & Simal-Gandara, J. (2011). Relationships between Godello white wine sensory properties and its aromatic fingerprinting obtained by GC–MS. Food Chemistry, 129, 890–898.

    Article  CAS  Google Scholar 

  • Hernanza, D., Galloa, V., Recamales, Á. F., Meléndez-Martínezb, A. J., & Herediab, F. J. (2008). Comparison of the effectiveness of solid-phase and ultrasound-mediated liquid–liquid extractions to determine the volatile compounds of wine. Talanta, 76, 929–935.

    Article  Google Scholar 

  • Ivanova, V., Dörnyei, Á., Márk, L., Vojnoski, B., Stafilov, T., Stefova, M., et al. (2011). Polyphenolic content of Vranec wines produced by different vinification conditions. Food Chemistry, 124, 316–325.

    Article  CAS  Google Scholar 

  • Lafon-Lafourcade, S., Geneix, C., & Ribéreau-Gayon, P. (1984). Inhibition of alcoholic fermentation of grape must by fatty acids produced by yeasts and their elimination by yeast ghosts. Applied and Environmental Microbiology, 47, 1246–1249.

    CAS  Google Scholar 

  • Lee, S. H., Seo, M. J., Riu, M., Cotta, J. P., Block, D. E., Dokoozlian, N. K., et al. (2007). Vine microclimate and norisoprenoid concentration in Cabernet Sauvignon grapes and wines. American Journal of Enology and Viticulture, 58, 291–301.

    CAS  Google Scholar 

  • Li, H., Tao, Y. S., Wang, H., & Zhang, L. (2008). Impact odorants of Chardonnay dry white wine from Changli County (China). European Food Research and Technology, 227, 287–292.

    Article  CAS  Google Scholar 

  • López, R., Aznar, M., Cacho, J., & Ferreira, V. (2002). Determination of minor and trace volatile compounds in wine by solid-phase extraction and gas chromatography with mass spectrometric detection. Journal of Chromatography A, 966, 167–177.

    Article  Google Scholar 

  • Macedo, S., Fernandes, S., Lopes, J. A., de Sousa, H., Pereira, P. J., Carmelo, P. J., et al. (2008). Recovery of wine-must aroma compounds by supercritical CO2. Food and Bioprocess Technology, 1, 74–81.

    Article  Google Scholar 

  • Marais, J. (1998). Effect of grape temperature, oxidation and skin contact on Sauvignon Blanc juice and wine composition and wine quality. South African Journal Enology and Viticulture, 19(1), 10–16.

    Google Scholar 

  • Marais, J., & Poll, H. J. (1980). Effect of storage time and temperature on the volatile composition and quality of dry white table wines. Vitis, 19, 151–164.

    Google Scholar 

  • Marino, N. C., Tamames, E. L., & Jares, C. M. G. (1995). Contribution to the study of the aromatic potential of three Muscat Vitis vinifera varieties: Identification of new compounds. Food Science and Technology International, 1, 105–116.

    Article  Google Scholar 

  • Martorell, N., Martí, M. P., Mestres, M., Busto, O., & Guasch, J. (2002). Determination of 4-ethylguaiacol and 4-ethylphenol in red wines using headspace-solid-phase microextraction-gas chromatography. Journal of Chromatography A, 975, 349–354.

    Article  CAS  Google Scholar 

  • Miklosy, E., Kalmar, Z., Polos, V., & Kerenyi, Z. (2000). Study of volatile aroma components in young Tokaji Aszu wines by GC-MS. Chromatographia, 51, S305–S308.

    Article  CAS  Google Scholar 

  • Miklosy, E., Kalmar, Z., & Kerenyi, Z. (2004). Identification of some characteristic aroma compounds in noble rotted grape berries and Aszu wines from Tokaj by GC-MS. Acta Alimentaria, 33(3), 215–226.

    Article  CAS  Google Scholar 

  • Moio, L., Chambellant, E., Lesschaeve, I., Issanchou, S., Schlich, P., & Etievant, P. X. (1995). Production of representative wine extracts for chemical and olfactory analysis. Italian Journal of Food Science, 7(3), 265–278.

    CAS  Google Scholar 

  • Ortega-Heras, M., González-SanJosé, M. L., & Beltrán, S. (2002). Aroma composition of wine studied by different extraction methods. Analytica Chimica Acta, 458, 85–93.

    Article  CAS  Google Scholar 

  • Perestrelo, R., Fernandes, A., Albuquerque, F. F., Marques, J. C., & Camara, J. S. (2006). Analytical characterization of the aroma of Tinta Negra Mole red wine: Identification of the main odorants compounds. Analytica Chimica Acta, 563, 154–164.

    Article  CAS  Google Scholar 

  • Riu-Aumatell, M., Vargas, L., Vichi, S., Guadayol, J. M., López-Tamames, E., & Buxaderas, S. (2011). Characterisation of volatile composition of white salsify (Tragopogon porrifolius L.) by headspace solid-phase microextraction (HS-SPME) and simultaneous, distillation–extraction (SDE) coupled to GC–MS. Food Chemistry, 129, 557–564.

    Article  CAS  Google Scholar 

  • Shinohara, T., & Watanabe, M. (1981). Effects of fermentation conditions and aging temperature on volatile ester contents in wine. Agricultural and Biological Chemistry, 45, 2645–2651.

    Article  CAS  Google Scholar 

  • Skinkis, P. A., Bordelon, B. P., & Butz, E. M. (2010). Effects of sunlight exposure on berry and wine monoterpenes and sensory characteristics of Traminette. American Journal of Enology and Viticulture, 61, 147–156.

    CAS  Google Scholar 

  • Stines, A. P., Grubb, J., Gockowiak, H., Henschke, P. A., Hoj, P. B., & van Heeswick, R. (2000). Proline and arginine accumulation in developing berries of Vitis vinifera L. in Australian vineyards: Influence of vine cultivar, berry maturity and tissue type. Australian Journal of Grape and Wine Research, 6, 150–158.

    Article  CAS  Google Scholar 

  • Toth-Markus, M., Magyar, I., Kardos, K., Banszky, L., & Maraz, A. (2002). Study of Tokaji Aszu wine flavour by solid phase microextraction method. Acta Alimentaria, 31(4), 343–354.

    Article  CAS  Google Scholar 

  • Vas, G., Gal, L., Harangi, J., Dobo, A., & Vekey, K. (1998). Determination of volatile aroma compounds of Blaufrankisch wines extracted by solid-phase microextraction. Journal of Chromatographic Science, 36(10), 505–510.

    Article  CAS  Google Scholar 

  • Weldegergis, B. T., de Villiers, A., & Crouch, A. M. (2011). Chemometric investigation of the volatile content of young South African wines. Food Chemistry, 128, 1100–1109.

    Article  CAS  Google Scholar 

  • Xi, Z-m, Tao, Y-s, Zhang, L., & Li, H. (2011). Impact of cover crops in vineyard on the aroma compounds of Vitis vinifera L. cv Cabernet Sauvignon wine. Food Chemistry, 127, 516–522.

    Article  CAS  Google Scholar 

  • Zoecklein, B. W., Wolf, T. K., Marcy, J. E., & Jasinski, Y. (1998). Effect of fruit zone leaf thinning on total glycosides and selected aglycone concentrations of Riesling (Vitis vinifera L.) grapes. American Journal of Enology and Viticulture, 49, 35–43.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr. Kire Trajkov from the Tikveš Winery (Kavadarci, R. Macedonia) for supplying the Macedonian red and white wine samples. This work was supported by a grant from the CEEPUS, CII-HU-0010-03-0809 Network, covering the study stay of V.I. in Pécs, Hungary, which is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Violeta Ivanova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanova, V., Stefova, M., Vojnoski, B. et al. Volatile Composition of Macedonian and Hungarian Wines Assessed by GC/MS. Food Bioprocess Technol 6, 1609–1617 (2013). https://doi.org/10.1007/s11947-011-0760-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-011-0760-y

Keywords

Navigation