Skip to main content
Log in

Relationships between rheological properties, texture and structure of apple (Granny Smith var.) affected by blanching and/or osmotic dehydration

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The objective of this work was to evaluate and correlate rheological properties (small-scale dynamic oscillatory and creep/recovery measurements and large-scale compression force-deformation testing), texture (sensory evaluation by trained panel) and structure (optical and transmission electronic microscopy observations) of apples osmotically dehydrated to water activity (a w) 0.97 with glucose, with or without previous blanching. All apple samples showed a solid behavior (G′ > G″) dominating the viscoelastic response, but both dynamic moduli were reduced due to processing. The instantaneous elastic compliance (J 0) and the retarded compliances (J 1 and J 2) increased for treated tissues and the steady-state viscosity (η N) was approximately 15% to 29% of the value of fresh apple. In general, compression parameters decreased for all treated tissues. Changes in structural features were mainly evidenced in heated samples. Partial least squares regression analysis regression models revealed that texture could be well predicted by rheological properties (compression and creep parameters). Juiciness, crispness and sensory hardness were negatively correlated to J 0, J 1 and J 2, and η N was negatively correlated to sensory fracturability. Some mechanical parameters (fracturability, hardness 2, area 2, modulus of deformability and cohesiveness) were positively related to sensory fracturability, crispness and sensory hardness; and juiciness was negatively correlated to hardness. Compression and creep parameters showed ability to evidence structure differences (rupture of membranes, swelling of cells and degradation of cell walls) and to explain texture of treated apples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alvarez, M. D., & Canet, W. (1998). Rheological characterization of fresh and cooked potato tissues (cv. Monalisa). Zeitschrift für Lebensmittel-Untersuchung und -Forschung, 207, 55–65.

    Article  CAS  Google Scholar 

  • Alzamora, S. M., Cerrutti, P., Guerrero, S., & López-Malo, A. (1995). Minimally processes fruits by combined methods. In G. V. Barbosa-Cánovas & J. Welti-Chanes (Eds.), Food preservation by moisture control: fundamentals and applications (pp. 463–492). Lancaster: Technomics Publishing.

    Google Scholar 

  • Alzamora, S. M., Gerschenson, L. N., Vidales, S., & Nieto, A. (1997). Structural changes in the minimal processing of fruits: Some effects of blanching and sugar impregnation. In P. Fito, E. Ortega-Rodríguez, & G. V. Barbosa-Cánovas (Eds.), Food engineering 2000 (pp. 117–140). New York: Chapman & Hall.

    Chapter  Google Scholar 

  • Alzamora, S. M., Castro, M. A., Nieto, A. B., Vidales, S. L., & Salvatori, D. M. (2000). The rol of tissue microstructure in the textural characteristics of minimally processed fruits. In S. M. Alzamora, M. S. Tapia, & A. López-Malo (Eds.), Minimally processed fruits and vegetables (pp. 153–171). Maryland: Aspen.

    Google Scholar 

  • Alzamora, S. M., Viollaz, P. E., Martínez, V. Y., Nieto, A. B., & Salvatori, D. M. (2008). Exploring the linear viscoelastic properties structure relationship in processed fruit tissues. In G. E. Gutiérrez-López, G. V. Barbosa-Cánovas, J. Welti-Chanes, & E. Parada-Arias (Eds.), Food Engineering: Integrated Approaches (pp. 133–214). New York: Springer.

    Google Scholar 

  • Bourne, M. C. (1976). Texture of fruits and vegetables. In J. M. DeMan, P. W. Voisey, V. F. Rasper, & D. W. Stanley (Eds.), Rheology and texture in food quality (pp. 275–307). New York: Van Nostrand Reinhold/AVI.

    Google Scholar 

  • Bourne, M. C. (1978). Texture Profile Analysis. Food Technology, 32, 62–66.

    Google Scholar 

  • Bourne, M. C., & Comstock, S. H. (1981). Effect of degree of compression on texture profile parameters. Journal of Texture Studies, 12, 201–216.

    Article  Google Scholar 

  • Calzada, J. F., & Peleg, M. (1978). Mechanical interpretation of compressive stress–strain relationships of solids foods. Journal of Food Science, 43, 1087–1092.

    Article  Google Scholar 

  • Castelló, M. L., Igual, M., Fito, J. P., & Chiralt, A. (2009). Influence of osmotic dehydration on texture, respiration and microbial stability of apple slices (Var. Granny Smith). Journal of Food Engineering, 91, 1–9.

    Article  Google Scholar 

  • Chauvin, M. A., Younce, F., Ross, C., & Swanson, B. (2008). Standard scales for crispness, crackliness and crunchiness in dry and wet foods: relationship with acoustical determinations. Journal of Texture Studies, 39, 345–368.

    Article  Google Scholar 

  • Chauvin, M. A., Ross, C., Pitts, M., Kupferman, E., & Swanson, B. (2010). Relationship between instrumental and sensory determination of apple and pear texture. Journal of Food Quality, 33, 181–198.

    Article  Google Scholar 

  • Chiralt, A., & Fito, P. (2003). Transport mechanisms in osmotic dehydration. The role of the structure. Food Science and Technology International, 9, 179–186.

    Article  Google Scholar 

  • Chiralt, A., Martínez-Navarrete, N., Martínez-Monzó, J., Talens, P., Moraga, G., Ayala, A., et al. (2001). Changes in mechanical properties throughout osmotic processes. Cryoprotectant effect. Journal of Food Engineering, 49, 129–135.

    Article  Google Scholar 

  • Civille, G. V., & Szczesniak, A. S. (1973). Guidelines to training a texture profile panel. Journal of Texture Studies, 4, 204–223.

    Article  Google Scholar 

  • D’Ambrogio de Argüeso, A. (1986). Manual de Técnicas en Histología Vegetal. Buenos Aires: Hemisferio Sur S.A.

    Google Scholar 

  • Dermesonlouoglou, L. K., Pourgouri, S., & Taoukis, P. S. (2008). Kinetic study of the effect of the osmotic dehydration pre-treatment to the shelf life of frozen cucumber. Innovative Food Science and Emerging Technologies, 9, 542–549.

    Article  Google Scholar 

  • Garcia Loredo A B & Guerrero S N (2011) Correlation between instrumental and sensory ratings by evaluation of some texture reference scales. International Journal of Food Science and Technology, in press, doi:10.1111/j.1365-2621.2011.02709

  • Giangiacomo, R., Torreggiani, D., Erba, M. L., & Messina, G. (1994). Use of osmodehydrofroozen fruit cubes in yogurt. Italian Journal of Food Science, 6, 345–350.

    Google Scholar 

  • Harker, F. R., Amos, R. L., Echeverria, G., & Amdgunson, F. A. (2006). Influence of texture on taste: insights gained during studies of hardness, juiciness, and sweetness of apple fruit. Journal of Food Science, 71(2), S77–S82.

    Article  CAS  Google Scholar 

  • Hough, G., Contarini, A., & Muñoz, A. (1994). Training a texture profile panel and constructing standard rating scales in Argentina. Journal of Texture Studies, 25, 45–57.

    Article  Google Scholar 

  • Ilker, R., & Szczesniak, A. S. (1990). Structural and Chemical bases for texture of plant foodstuffs. Journal of Texture Studies, 21, 1.

    Article  CAS  Google Scholar 

  • Jack, F. R., Paterson, A., & Piggott, J. R. (1995). Perceived texture: direct and indirect methods for use in product development. International Journal of Food Science and Technology, 30, 1–12.

    CAS  Google Scholar 

  • Jackman, R. L., & Stanley, D. W. (1995). Creep behaviour of tomato pericarp tissue as influenced by ambient temperature ripening and chilled storage. Journal of Texture Studies, 26, 537–552.

    Article  Google Scholar 

  • John, M. A., & Dey, P. M. (1986). Postharvest changes in fruit cell walls. Advances in Food Research, 30, 139–193.

    Article  CAS  Google Scholar 

  • Khin, M. M., Zhou, W., & Yeo, S. Y. (2007). Mass transfer in the osmotic dehydration of coated apple cubes by using maltodextrin as the coating and their textural properties. Journal of Food Engineering, 81, 514–522.

    Article  CAS  Google Scholar 

  • Kunzek, H., Kabbert, R., & Gloyna, D. (1999). Aspects of material science in food processing: changes in plant cell walls of fruits and vegetables. Zeitschrift für Lebensmittel-Untersuchung und -Forschung A, 208, 233–250.

    Article  CAS  Google Scholar 

  • Martens, M., & Martens, H. (1986). Partial least squares regression. In J. R. Piggot (Ed.), Statistical procedures in food research (pp. 293–359). London: Elsevier.

    Google Scholar 

  • Martínez, V. Y., Nieto, A. B., Viollaz, P. E., & Alzamora, S. M. (2005). Viscoelatic behaviour of melon tissue as influenced by blanching and osmotic dehydration. Journal of Food Science, 70, 12–18.

    Article  Google Scholar 

  • Martínez, V. Y., Nieto, A. B., Castro, M. A., & Alzamora, S. M. (2007). Viscoelastic characteristics of Granny Smith apple during glucose osmotic dehydration. Journal of Food Engineering, 83, 394–403.

    Article  Google Scholar 

  • Matuska, M., Lenart, A., & Lazarides, H. N. (2006). On the use of edible coatings to monitor osmotic dehydration kinetics for minimal solids uptake. Journal of Food Engineering, 72, 85–91.

    Article  Google Scholar 

  • Meilgaard, M., Civille, G. V., & Carrt, B. T. (2006). Sensory Evaluation Techniques (4th ed.). Florida: CRC.

    Google Scholar 

  • Meullenet, J., Lyon, B. G., Carpenter, J. A., & Lyon, C. E. (1998). Relationship between sensory and instrumental texture profile atributes. Journal of Sensory Studies, 13, 77–93.

    Article  Google Scholar 

  • Mittal, J. P., & Mohsenin, N. N. (1987). Rheological characterization of apple cortex. Journal of Texture Studies, 18, 65–93.

    Article  Google Scholar 

  • Nieto, A., Salvatori, D., Castro, M. A., & Alzamora, S. M. (1998). Air drying behaviour of apples as affected by blanching and glucose impregnation. Journal of Food Engineering, 36, 63–79.

    Article  Google Scholar 

  • Ochoa-Martínez, L. A., García-Quintero, M., Morales-Castro, J., Gallegos-Infante, A., Martínez-Sánchez, C. E., & Herman-Iara, E. (2006). Effect of CaCl2 and convective-osmotic drying on texture and preference of Apple. Journal of Food Quality, 29, 583–595.

    Article  Google Scholar 

  • Pitt, R. E. (1992). Viscoelastic properties of fruits and vegetables. In M. A. Rao & J. F. Steffe (Eds.), Viscoelastic properties of foods (pp. 49–76). London: Elsevier.

    Google Scholar 

  • Reynolds, E. S. (1963). The use of lead citrate at high pH as an electron-opaque stain for electron microscopy. The Journal of Cell Biology, 17, 208.

    Article  CAS  Google Scholar 

  • Roa, V., & Tapia de Daza, M. S. (1991). Evaluation of water activity measurements with a dew point electronic humidity meter. Lebensmittel Wissenchaft und Technologie, 24, 208–213.

    Google Scholar 

  • Salvatori, D. M., & Alzamora, S. M. (2000). Structural changes and mass transfer during glucose infusio´n of apples as affected by blanching and process variables. Drying Technology, 18, 21–48.

    Article  Google Scholar 

  • Sherman, P. (1970). Industrial rheology. New York: Academic.

    Google Scholar 

  • Szczesniak, A. S., & Ilker, R. (1988). The meaning of texture characteristics—juiciness in plant foodstuffs. Journal of Texture Studies, 19, 66–78.

    Google Scholar 

  • Thybo, A. K., & Martens, M. (1998). Development of a sensory texture profile of cooked potatoes by multivariate data analysis. Journal of Texture Studies, 29, 453–468.

    Article  Google Scholar 

  • Wu, J., & Guo, K. G. (2010). Dynamic viscoelastic behavior and microstructural changes of Korla pear (Pyrus bretschneideri rehd) under varying turgor levels. Biosystem Engineering, 106(4), 485–492.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the University of Buenos Aires, CONICET, Agencia Nacional de Promoción Científica y Tecnológica of Argentina and BID.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stella M. Alzamora.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garcia Loredo, A.B., Guerrero, S.N., Gomez, P.L. et al. Relationships between rheological properties, texture and structure of apple (Granny Smith var.) affected by blanching and/or osmotic dehydration. Food Bioprocess Technol 6, 475–488 (2013). https://doi.org/10.1007/s11947-011-0701-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-011-0701-9

Keywords

Navigation