Skip to main content

Advertisement

Log in

Use of Disease-Modifying Therapies in Pediatric MS

  • Multiple Sclerosis and Related Disorders (P Villoslada, Section Editor)
  • Published:
Current Treatment Options in Neurology Aims and scope Submit manuscript

Opinion statement

Pediatric multiple sclerosis (PedMS) is a rare disease with a more severe prognosis compared to adult-onset MS. It remains a challenging condition to treat because of the highly inflammatory nature of the disease, the prominent cognitive issues, and the limited knowledge about the efficacy and safety of current available disease-modifying therapies. Over the past decade, there has been a dramatic increase in the number of drugs licensed for adult-onset MS and several of them, although not tested in PedMS, are currently being used off-label in this population. To date, interferon-beta and glatiramer acetate are the most commonly used first-line treatments in children, although the efficacy and safety of these drugs have only been studied in observational cohorts and in unblinded randomized controlled trials. For children with breakthrough disease, escalation to higher efficacious second-line therapies, such as natalizumab, fingolimod, dimethyl fumarate, mitoxantrone, cyclophosphamide, rituximab, and daclizumab may be considered. Large observational studies showed natalizumab is an effective treatment with safety and efficacy comparable to those in adult populations. The safety, efficacy, and tolerability of the other second-line treatments in PedMS have been reported only in small size retrospective case series. Large phase III studies are underway which will provide important information regarding the efficacy and safety of fingolimod, teriflunomide, and dimethyl fumarate in PedMS. Symptomatic treatments for fatigue, spasticity, depression, bladder and bowel dysfunction, and neuropathic pain should be considered in PedMS, especially when these symptoms impact the quality of life. Further work is needed to ensure that new trials best address treatment outcomes tailored to PedMS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Hanefeld F et al. Multiple sclerosis in childhood: report of 15 cases. Brain Dev. 1991;13(6):410–6.

    Article  CAS  PubMed  Google Scholar 

  2. Sindern E et al. Early onset MS under the age of 16: clinical and paraclinical features. Acta Neurol Scand. 1992;86(3):280–4.

    Article  CAS  PubMed  Google Scholar 

  3. Banwell B et al. Multiple sclerosis in children: clinical diagnosis, therapeutic strategies, and future directions. Lancet Neurol. 2007;6(10):887–902.

    Article  PubMed  Google Scholar 

  4. Boiko A et al. Early onset multiple sclerosis: a longitudinal study. Neurology. 2002;59(7):1006–10.

    Article  CAS  PubMed  Google Scholar 

  5. Chitnis T et al. Demographics of pediatric-onset multiple sclerosis in an MS center population from the Northeastern United States. Mult Scler. 2009;15(5):627–31.

    Article  CAS  PubMed  Google Scholar 

  6. Duquette P et al. Multiple sclerosis in childhood: clinical profile in 125 patients. J Pediatr. 1987;111(3):359–63.

    Article  CAS  PubMed  Google Scholar 

  7. Ghezzi A et al. Multiple sclerosis in childhood: clinical features of 149 cases. Mult Scler. 1997;3(1):43–6.

    Article  CAS  PubMed  Google Scholar 

  8. Guilhoto LM et al. Pediatric multiple sclerosis report of 14 cases. Brain Dev. 1995;17(1):9–12.

    Article  CAS  PubMed  Google Scholar 

  9. Mikaeloff Y et al. Prognostic factors for early severity in a childhood multiple sclerosis cohort. Pediatrics. 2006;118(3):1133–9.

    Article  PubMed  Google Scholar 

  10. Renoux C et al. Natural history of multiple sclerosis with childhood onset. N Engl J Med. 2007;356(25):2603–13. Largest study demonstrating slower time to EDSS landmarks in pediatric-onset MS compared to adult-onset MS, yet younger age at these disability landmarks in pediatric-onset MS patients.

    Article  CAS  PubMed  Google Scholar 

  11. Ruggieri M et al. Multiple sclerosis in children under 6 years of age. Neurology. 1999;53(3):478–84.

    Article  CAS  PubMed  Google Scholar 

  12. Selcen D, Anlar B, Renda Y. Multiple sclerosis in childhood: report of 16 cases. Eur Neurol. 1996;36(2):79–84.

    Article  CAS  PubMed  Google Scholar 

  13. Simone IL et al. Course and prognosis in early-onset MS: comparison with adult-onset forms. Neurology. 2002;59(12):1922–8.

    Article  CAS  PubMed  Google Scholar 

  14. Reinhardt K et al. Multiple sclerosis in children and adolescents: incidence and clinical picture—new insights from the nationwide German surveillance (2009–2011). Eur J Neurol. 2014;21(4):654–9.

    Article  CAS  PubMed  Google Scholar 

  15. Ruggieri M et al. Multiple sclerosis in children under 10 years of age. Neurol Sci. 2004;25 Suppl 4:S326–35.

    Article  PubMed  Google Scholar 

  16. Fromont A et al. Geographic variations of multiple sclerosis in France. Brain. 2010;133(Pt 7):1889–99.

    Article  PubMed  Google Scholar 

  17. Langer-Gould A et al. Incidence of acquired CNS demyelinating syndromes in a multiethnic cohort of children. Neurology. 2011;77(12):1143–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pohl D et al. Paediatric multiple sclerosis and acute disseminated encephalomyelitis in Germany: results of a nationwide survey. Eur J Pediatr. 2007;166(5):405–12.

    Article  PubMed  Google Scholar 

  19. Gorman MP et al. Increased relapse rate in pediatric-onset compared with adult-onset multiple sclerosis. Arch Neurol. 2009;66(1):54–9. First study demonstrating that children with MS have two to three times as many relapses as adult-onset MS patients.

    Article  PubMed  Google Scholar 

  20. Benson LA et al. Elevated relapse rates in pediatric compared to adult MS persist for at least 6 years. Mult Scler Relat Disord. 2014;3(2):186–93.

    Article  CAS  PubMed  Google Scholar 

  21. Yeh EA et al. Magnetic resonance imaging characteristics of children and adults with paediatric-onset multiple sclerosis. Brain. 2009;132(Pt 12):3392–400.

    Article  CAS  PubMed  Google Scholar 

  22. Amato MP et al. Neuropsychological features in childhood and juvenile multiple sclerosis: five-year follow-up. Neurology. 2014;83(16):1432–8. Large study demonstrating cognitive issues in at least one third of pediatric patients, and decline in some over a 5 year period.

    Article  PubMed  Google Scholar 

  23. Kerbrat A et al. Reduced head and brain size for age and disproportionately smaller thalami in child-onset MS. Neurology. 2012;78(3):194–201.

    Article  CAS  PubMed  Google Scholar 

  24. Chitnis T et al. Consensus statement: evaluation of new and existing therapeutics for pediatric multiple sclerosis. Mult Scler. 2012;18(1):116–27.

    Article  CAS  PubMed  Google Scholar 

  25. Chitnis T. Disease-modifying therapy of pediatric multiple sclerosis. Neurotherapeutics. 2013;10(1):89–96.

    Article  CAS  PubMed  Google Scholar 

  26. Chitnis T et al. International Pediatric MS Study Group Clinical Trials Summit: meeting report. Neurology. 2013;80(12):1161–8. This is a meeting report of U.S., European and Canadian regulatory agencies with clinicians, pharmaceutical representatives, discussing optimal trial design and outcomes in pediatric MS.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mikaeloff Y et al. Interferon-beta treatment in patients with childhood-onset multiple sclerosis. J Pediatr. 2001;139(3):443–6.

    Article  CAS  PubMed  Google Scholar 

  28. Ghezzi A et al. Disease-modifying drugs in childhood-juvenile multiple sclerosis: results of an Italian co-operative study. Mult Scler. 2005;11(4):420–4.

    Article  CAS  PubMed  Google Scholar 

  29. Pohl D et al. Treatment of early onset multiple sclerosis with subcutaneous interferon beta-1a. Neurology. 2005;64(5):888–90.

    Article  CAS  PubMed  Google Scholar 

  30. Ghezzi A et al. Treatment of early-onset multiple sclerosis with intramuscular interferonbeta-1a: long-term results. Neurol Sci. 2007;28(3):127–32.

    Article  CAS  PubMed  Google Scholar 

  31. Mikaeloff Y et al. Effectiveness of early beta interferon on the first attack after confirmed multiple sclerosis: a comparative cohort study. Eur J Paediatr Neurol. 2008;12(3):205–9.

    Article  PubMed  Google Scholar 

  32. Pakdaman H et al. Treatment of early onset multiple sclerosis with suboptimal dose of interferon beta-1a. Neuropediatrics. 2006;37(4):257–60.

    Article  CAS  PubMed  Google Scholar 

  33. Tenembaum SN et al. Subcutaneous interferon Beta-1a in pediatric multiple sclerosis: a retrospective study. J Child Neurol. 2013;28(7):849–56.

    Article  PubMed  Google Scholar 

  34. Korporal M et al. Interferon beta-induced restoration of regulatory T-cell function in multiple sclerosis is prompted by an increase in newly generated naive regulatory T cells. Arch Neurol. 2008;65(11):1434–9.

    Article  PubMed  Google Scholar 

  35. Makhani N et al. Glatiramer acetate-induced acute hepatotoxicity in an adolescent with MS. Neurology. 2013;81(9):850–2.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tenembaum SN, Segura MJ. Interferon beta-1a treatment in childhood and juvenile-onset multiple sclerosis. Neurology. 2006;67(3):511–3.

    Article  CAS  PubMed  Google Scholar 

  37. Ghezzi A. Therapeutic strategies in childhood multiple sclerosis. Ther Adv Neurol Disord. 2010;3(4):217–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Banwell B et al. Safety and tolerability of interferon beta-1b in pediatric multiple sclerosis. Neurology. 2006;66(4):472–6.

    Article  CAS  PubMed  Google Scholar 

  39. Huppke P et al. Natalizumab use in pediatric multiple sclerosis. Arch Neurol. 2008;65(12):1655–8.

    Article  PubMed  Google Scholar 

  40. Putzki N et al. Natalizumab treatment in paediatric multiple sclerosis: a case of induction, de-escalation and escalation. Eur J Neurol. 2010;17(11):e105.

    PubMed  Google Scholar 

  41. Ghezzi A et al. Natalizumab in pediatric multiple sclerosis: results of a cohort of 55 cases. Mult Scler. 2013;19(8):1106–12.

    Article  CAS  PubMed  Google Scholar 

  42. Arnal-Garcia C et al. Natalizumab use in pediatric patients with relapsing-remitting multiple sclerosis. Eur J Paediatr Neurol. 2013;17(1):50–4.

    Article  PubMed  Google Scholar 

  43. Kornek B et al. Natalizumab therapy for highly active pediatric multiple sclerosis. JAMA Neurol. 2013;70(4):469–75.

    Article  PubMed  Google Scholar 

  44. Ghezzi A et al. Natalizumab in the pediatric MS population: results of the Italian registry. BMC Neurol. 2015;15:174. Large observational study of 100+ pediatric MS patients treated with natalizumab.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Gorelik L et al. Anti-JC virus antibodies: implications for PML risk stratification. Ann Neurol. 2010;68(3):295–303.

    Article  PubMed  Google Scholar 

  46. Millefiorini E et al. Randomized placebo-controlled trial of mitoxantrone in relapsing-remitting multiple sclerosis: 24-month clinical and MRI outcome. J Neurol. 1997;244(3):153–9.

    Article  CAS  PubMed  Google Scholar 

  47. Edan G et al. Therapeutic effect of mitoxantrone combined with methylprednisolone in multiple sclerosis: a randomised multicentre study of active disease using MRI and clinical criteria. J Neurol Neurosurg Psychiatry. 1997;62(2):112–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hartung HP et al. Mitoxantrone in progressive multiple sclerosis: a placebo-controlled, double-blind, randomised, multicentre trial. Lancet. 2002;360(9350):2018–25.

    Article  PubMed  Google Scholar 

  49. Martinelli V et al. Acute myeloid leukemia in Italian patients with multiple sclerosis treated with mitoxantrone. Neurology. 2011;77(21):1887–95.

    Article  CAS  PubMed  Google Scholar 

  50. Mulroy E et al. Long-term risk of leukaemia or cardiomyopathy after mitoxantrone therapy for multiple sclerosis. Eur Neurol. 2012;67(1):45–7.

    Article  PubMed  Google Scholar 

  51. Kornek B et al. Long-term follow-up of pediatric patients treated with mitoxantrone for multiple sclerosis. Neuropediatrics. 2011;42(1):7–12.

    Article  CAS  PubMed  Google Scholar 

  52. Marriott JJ, Miyasaki J, Gronseth G, O’Connor PW, Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Evidence report: the efficacy and safety of mitoxantrone (Novantrone) in the treatment of multiple sclerosis: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology. 2010;74:1463–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. D., O., Immunosuppressive treatments in multiple sclerosis. Handb Clin Neurol., 2014: p. p 122.

  54. Makhani N et al. Cyclophosphamide therapy in pediatric multiple sclerosis. Neurology. 2009;72(24):2076–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cohen JA et al. Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N Engl J Med. 2010;362(5):402–15.

    Article  CAS  PubMed  Google Scholar 

  56. Fragoso YD et al. Fingolimod prescribed for the treatment of multiple sclerosis in patients younger than age 18 years. Pediatr Neurol. 2015;53(2):166–8.

    Article  PubMed  Google Scholar 

  57. Gold R et al. Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N Engl J Med. 2012;367(12):1098–107.

    Article  CAS  PubMed  Google Scholar 

  58. Fox RJ et al. Placebo-controlled phase 3 study of oral BG-12 or glatiramer in multiple sclerosis. N Engl J Med. 2012;367(12):1087–97.

    Article  CAS  PubMed  Google Scholar 

  59. Hauser SL et al. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med. 2008;358(7):676–88.

    Article  CAS  PubMed  Google Scholar 

  60. Beres SJ, Graves J, Waubant E. Rituximab use in pediatric central demyelinating disease. Pediatr Neurol. 2014;51(1):114–8.

    Article  PubMed  Google Scholar 

  61. Nosadini M et al. Rituximab monitoring and redosing in pediatric neuromyelitis optica spectrum disorder. Neurol Neuroimmunol Neuroinflamm. 2016;3(1):e188.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Salzer, J., et al., Rituximab in paediatric onset multiple sclerosis: a case series. J Neurol, 2015.

  63. Sheridan JP et al. Intermediate-affinity interleukin-2 receptor expression predicts CD56(bright) natural killer cell expansion after daclizumab treatment in the CHOICE study of patients with multiple sclerosis. Mult Scler. 2011;17(12):1441–8.

    Article  CAS  PubMed  Google Scholar 

  64. Phillips G et al. Assessing the impact of multiple sclerosis disease activity and daclizumab HYP treatment on patient-reported outcomes: results from the SELECT trial. Mult Scler Relat Disord. 2016;6:66–72.

    Article  PubMed  Google Scholar 

  65. Gorman MP, Tillema J, Ciliax AM, Guttmann CR, Chitnis T. Daclizumab use in patients with pediatric multiple sclerosis. Arch Neurol. 2012;69(1):78–81.

    Article  PubMed  Google Scholar 

  66. MacAllister WS et al. Fatigue and quality of life in pediatric multiple sclerosis. Mult Scler. 2009;15(12):1502–8.

    Article  PubMed  Google Scholar 

  67. Goretti B et al. Fatigue and its relationships with cognitive functioning and depression in paediatric multiple sclerosis. Mult Scler. 2012;18(3):329–34.

    Article  CAS  PubMed  Google Scholar 

  68. Parrish JB et al. Fatigue and depression in children with demyelinating disorders. J Child Neurol. 2013;28(6):713–8.

    Article  PubMed  Google Scholar 

  69. Zifko UA et al. Modafinil in treatment of fatigue in multiple sclerosis. Results of an open-label study. J Neurol. 2002;249(8):983–7.

    Article  CAS  PubMed  Google Scholar 

  70. Rammohan KW, Lynn DJ. Modafinil for fatigue in MS: a randomized placebo-controlled double-blind study. Neurology. 2005;65(12):1995–7. author reply 1995-7.

    PubMed  Google Scholar 

  71. Stankoff B et al. Modafinil for fatigue in MS: a randomized placebo-controlled double-blind study. Neurology. 2005;64(7):1139–43.

    Article  CAS  PubMed  Google Scholar 

  72. Volkow ND et al. Therapeutic doses of oral methylphenidate significantly increase extracellular dopamine in the human brain. J Neurosci. 2001;21(2):RC121.

    CAS  PubMed  Google Scholar 

  73. Prommer E. Methylphenidate: established and expanding roles in symptom management. Am J Hosp Palliat Care. 2012;29(6):483–90.

    Article  PubMed  Google Scholar 

  74. Mendonca DA, Menezes K, Jog MS. Methylphenidate improves fatigue scores in Parkinson disease: a randomized controlled trial. Mov Disord. 2007;22(14):2070–6.

    Article  PubMed  Google Scholar 

  75. Blockmans D et al. Does methylphenidate reduce the symptoms of chronic fatigue syndrome? Am J Med. 2006;119(2):167 e23–30.

    Article  PubMed  Google Scholar 

  76. Roth AJ et al. Methylphenidate for fatigue in ambulatory men with prostate cancer. Cancer. 2010;116(21):5102–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Phe V, Chartier-Kastler E, Panicker JN. Management of neurogenic bladder in patients with multiple sclerosis. Nat Rev Urol. 2016;13(5):275–88.

    Article  CAS  PubMed  Google Scholar 

  78. Tickner N et al. An overview of drug therapies used in the treatment of dystonia and spasticity in children. Arch Dis Child Educ Pract Ed. 2012;97(6):230–5.

    Article  PubMed  Google Scholar 

  79. Hyser CL, Drake Jr ME. Status epilepticus after baclofen withdrawal. J Natl Med Assoc. 1984;76(5):533. 537-8.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Malhotra T, Rosenzweig I. Baclofen withdrawal causes psychosis in otherwise unclouded consciousness. J Neuropsychiatry Clin Neurosci. 2009;21(4):476.

    Article  PubMed  Google Scholar 

  81. Houtchens MK et al. Open label gabapentin treatment for pain in multiple sclerosis. Mult Scler. 1997;3(4):250–3.

    Article  CAS  PubMed  Google Scholar 

  82. Rudick R et al. Recommendations from the National Multiple Sclerosis Society Clinical Outcomes Assessment Task Force. Ann Neurol. 1997;42(3):379–82.

    Article  CAS  PubMed  Google Scholar 

  83. Rudick RA, Cutter G, Baier M, Fisher E, Dougherty D, Weinstock-Guttman B, et al. Use of the Multiple Sclerosis Functional Composite to predict disability in relapsing MS. Neurology. 2001;56(10):1324–30.

    Article  CAS  PubMed  Google Scholar 

  84. Polman CH et al. Recommendations for clinical use of data on neutralising antibodies to interferon-beta therapy in multiple sclerosis. Lancet Neurol. 2010;9(7):740–50.

    Article  CAS  PubMed  Google Scholar 

  85. Borriello G et al. Natalizumab treatment in pediatric multiple sclerosis: a case report. Eur J Paediatr Neurol. 2009;13(1):67–71.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanuja Chitnis MD.

Ethics declarations

Conflict of Interest

Marta Simone declares no conflict of interest.

Tanuja Chitnis is a member of the Steering committee for pediatric clinical trials for Novartis and Sanofi-Genzyme. She has provided one-time consultation for Genzyme-Sanofi, Biogen-Idec, Novartis, Genentech-Roche, and Bayer Pharmaceuticals. She receives grant support from Biogen-Idec, Serono, and Verily.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Multiple Sclerosis and Related Disorders

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simone, M., Chitnis, T. Use of Disease-Modifying Therapies in Pediatric MS. Curr Treat Options Neurol 18, 36 (2016). https://doi.org/10.1007/s11940-016-0420-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11940-016-0420-7

Keywords

Navigation