Skip to main content

Advertisement

Log in

Treatment of Mitochondrial Disorders

  • PEDIATRIC NEUROLOGY (HS SINGER, SECTION EDITOR)
  • Published:
Current Treatment Options in Neurology Aims and scope Submit manuscript

Opinion statement

While numerous treatments for mitochondrial disorders have been suggested, relatively few have undergone controlled clinical trials. Treatment of these disorders is challenging, as only symptomatic therapy is available. In this review we will focus on newer drugs and treatment trials in mitochondrial diseases, with a special focus on medications to avoid in treating epilepsy and ICU patient with mitochondrial disease, which has not been included in such a review. Readers are also referred to the opinion statement in A Modern Approach to the Treatment of Mitochondrial Disease published in Current Treatment Options in Neurology 2009. Many of the supplements used for treatment were reviewed in the previous abstract, and dosing guidelines were provided. The focus of this review is on items not previously covered in depth, and our discussion includes more recently studied compounds as well as any relevant updates on older compounds . We review a variety of vitamins and xenobiotics, including dichloroacetate (DCA), arginine, coenzyme Q10, idebenone, EPI-743, and exercise training. Treatment of epilepsy, which is a common feature in many mitochondrial phenotypes, warrants special consideration due to the added toxicity of certain medications, and we provide a discussion of these unique treatment challenges. Interesting, however, with only a few exceptions, the treatment strategies for epilepsy in mitochondrial cytopathies are the same as for epilepsy without mitochondrial dysfunction. We also discuss intensive care management, building upon similar reviews, adding new dimensions, and demonstrating the complexity of overall care of these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. DiMauro S, Schon EA. Mitochondrial respiratory-chain diseases. N Engl J Med. 2003;348:2656–68.

    Article  CAS  PubMed  Google Scholar 

  2. Parikh S, Saneto R, Falk MJ, et al. Modern Approach to the Treatment of Mitochondrial Disease. Curr Treat Options Neurol. 2009;11:414–30.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Glover EI, Martin J, Maher A, et al. A randomized trial of coenzyme Q10 in mitochondrial disorders. Muscle Nerve. 2010;42:739–48.

    Article  CAS  PubMed  Google Scholar 

  4. Esposti MD, Ngo A, Ghelli A, et al. The interaction of Q analogs, particularly hydroxydecyl benzoquinone (idebenone), with the respiratory complexes of heart mitochondria. Arch Biochem Biophys. 1996;330:395–400.

    Article  CAS  PubMed  Google Scholar 

  5. Gempel K, Topaloglu H, Talim B, et al. The myopathic form of coenzyme Q10 deficiency is caused by mutations in the electron-transferring-flavoprotein dehydrogenase (ETFDH) gene. Brain. 2007;130:2037–44.

    Article  PubMed  Google Scholar 

  6. Mancuso M, Orsucci D, Filosto M, et al. Drugs and mitochondrial diseases: 40 queries and answers. Expert Opin Pharmacother. 2012;13(4):527–43.

    Article  CAS  PubMed  Google Scholar 

  7. Klopstock T, Yu-Wai-Man P, Dimitriadis K, et al. A randomized placebo-controlled trial of idebenone in Leber's hereditary optic neuropathy. Brain. 2011;134(Pt 9):2677–86.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Rudolph G, Dimitriadis K, Büchner B, et al. Effects of idebenone on color vision in patients with leber hereditary optic neuropathy. J Neuroophthalmol. 2013;33(1):30–6. This randomized, double-blind placebo-controlled intervention demonstrated that idebenone can prevent loss of color vision, an early marker of LHON.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Garone C, Donati MA, Sacchini M, et al. Mitochondrial encephalomyopathy due to a novel mutation in ACAD9. JAMA Neurol. 2013;70(9):1177–9.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Haack TB, Danhauser K, Haberberger B, et al. Exome sequencing identifies ACAD9 mutations as a cause of complex I deficiency. Nat Genet. 2010;42(12):1131–4.

    Article  CAS  PubMed  Google Scholar 

  11. Abdelmalak M, Lew A, Ramezani R, et al. Long-term safety of dichloroacetate in congenital lactic acidosis. Mol Genet Metab. 2013;109(2):139–43.

    Article  CAS  PubMed  Google Scholar 

  12. Mermigkis C, Bouloukaki I, Mastorodemos V. Medical treatment with thiamine, coenzyme Q, vitamins E and C, and carnitine improved obstructive sleep apnea in an adult case of Leigh disease. Sleep Breath. 2013;17(4):1129–35.

    Article  PubMed  Google Scholar 

  13. Lands LC, Grey VL, Smountas AA. Effect of supplementation with a cysteine donor on muscular performance. J Appl Physiol. 1999;87:1381–5.

    CAS  PubMed  Google Scholar 

  14. Mancuso M, Orsucci D, Logerfo A, et al. Oxidative stress biomarkers in mitochondrial myopathies, basally and after cysteine donor supplementation. J Neurol. 2010;257:774–81.

    Article  CAS  PubMed  Google Scholar 

  15. Tarnopolsky MA, Beal MF. Potential for creatine and other therapies targeting cellular energy dysfunction in neurological disorders. Ann Neurol. 2001;49:561–74.

    Article  CAS  PubMed  Google Scholar 

  16. Rodriguez MC, MacDonald JR, Mahoney DJ, et al. Beneficial effects of creatine, CoQ10, and lipoic acid in mitochondrial disorders. Muscle Nerve. 2007;35(2):235–42.

    Article  CAS  PubMed  Google Scholar 

  17. Marangon K, Devaraj S, Tirosh O, et al. Comparison of the effect of lipoic acid and tocopherol supplementation on measures of oxidative stress. Free Radic Biol Med. 1999;27:1114–21.

    Article  CAS  PubMed  Google Scholar 

  18. Nierenberg AA, Kansky C, Brennan BP, et al. Mitochondrial modulators for bipolar disorder. A pathophysiologically informed paradigm for new drug development. Aust N Z J Psychiatry. 2013;47:26–42.

    Article  PubMed  Google Scholar 

  19. Medved I, Brown MJ, Bjorksten AR, et al. N-acetylcysteine enhances muscle cysteine and glutathione availability and attenuates fatigue during prolonged exercise in endurance-trained individuals. J Appl Physiol. 2004;97:1477–85.

    Article  CAS  PubMed  Google Scholar 

  20. Mancuso M, Orsucci D, Logerfo A, et al. Oxidative stress biomarkers in mitochondrial myopathies, basally and after cysteine donor supplementation. J Neurol. 2010;257:774–81.

    Article  CAS  PubMed  Google Scholar 

  21. Reid MB, Stokic DS, Koch SM, et al. N-acetylcysteine inhibits muscle fatigue in humans. J Clin Investig. 1994;94:2468–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Viscomi C, Burlina AB, Dweikat I, et al. Combined treatment with oral metronidazole and N-acetylcysteine is effective in ethylmalonic encephalopathy. Nat Med. 2010;16:869–71.

    Article  CAS  PubMed  Google Scholar 

  23. El-Hattab AW, Hsu JW, Emrick LT, et al. Restoration of impaired nitric oxide production in MELAS syndrome with citrulline and arginine supplementation. Mol Genet Metab. 2012;105(4):607–14.

    Article  CAS  PubMed  Google Scholar 

  24. Siciliano G, Simoncini C, Lo Gerfo A, et al. Effects of aerobic training on exercise-related oxidative stress in mitochondrial myopathies. Neuromuscul Disord. 2012;3:S172–7.

    Article  Google Scholar 

  25. Martinelli D, Catteruccia M, Piemonte F, et al. EPI-743 reverses the progression of the pediatric mitochondrial disease–genetically defined Leigh Syndrome. Mol Genet Metab. 2012;107(3):383–8.

    Article  CAS  PubMed  Google Scholar 

  26. Enns GM, Kinsman SL, Perlman SL, et al. Initial experience in the treatment of inherited mitochondrial disease with EPI-743. Mol Genet Metab. 2012;105(1):91–102.

    Article  CAS  PubMed  Google Scholar 

  27. Sadun AA, Chicani CF, Ross-Cisneros FN, et al. Effect of EPI 743 on the clinical course of the mitochondrial disease Leber hereditary optic neuropathy. Arch Neurol. 2012;69:331–8.

    Article  PubMed  Google Scholar 

  28. Komen JC, Thorburn DR. Turn up the power – pharmacological activation of mitochondrial biogenesis in mouse models. Br J Pharmacol. 2013. doi:10.1111/bph.12413.

  29. Noe N, Dillon L, Lellek V, et al. Bezafibrate improves mitochondrial function in the CNS of a mouse model of mitochondrial encephalopathy. Mitochondrion. 2013;13(5):417–26. This randomized trial showed that bezafibrate had a neuroprotective effect in this mouse model of mitochondrial encephalopathy and suggest that bezafibrate might be a promising therapeutic agent for the treatment of neurodegenerative disease associated with mitochondrial dysfunction.

    Article  CAS  PubMed  Google Scholar 

  30. Chaturvedi RK, Beal MF. Mitochondrial approaches for neuroprotection. Ann N Y Acad Sci. 2008;1147:395–412.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Liet JM, Pelletier V, Robinson BH, et al. The effect of short-term dimethylglycine treatment on oxygen consumption in cytochrome oxidase deficiency: a double-blind randomized crossover clinical trial. J Pediatr. 2003;142(1):62–6.

    Article  CAS  PubMed  Google Scholar 

  32. Binzak BA, Wevers RA, Moolenaar SH, et al. Cloning of dimethylglycine dehydrogenase and a new human inborn error of metabolism, dimethylglycine dehydrogenase deficiency. Am J Hum Genet. 2001;68:839–47.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. DiMauro S, Mancuso M. Mitochondrial diseases: therapeutic approaches. Biosci Rep. 2007;27:125–37.

    Article  CAS  PubMed  Google Scholar 

  34. Tachibana M, Sparman M, Sritanaudomchai H, et al. Mitochondrial gene replacement in primate offspring and embryonic stem cells. Nature. 2009;461:367–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Mah CS, Soustek MS, Todd AG, et al. Adeno-associated virus-mediated gene therapy for metabolic myopathy. Hum Gene Ther. 2013;24(11):928–36.

    Article  CAS  PubMed  Google Scholar 

  36. Kann O, Kovács R. Mitochondria and neuronal activity. Am J Physiol Cell Physiol. 2007;292(2):C641–57.

    Article  CAS  PubMed  Google Scholar 

  37. Kilbride SM, Telford JE, Tipton KF, Davey GP. Partial inhibition of complex I activity increases Ca-independent glutamate release rates from depolarized synaptosomes. J Neurochem. 2008;106(2):826–34.

    Article  CAS  PubMed  Google Scholar 

  38. Kunz WS. The role of mitochondria in epileptogenesis. Curr Opin Neurol. 2002;15(2):179–84.

    Article  PubMed  Google Scholar 

  39. McKenna MC. The glutamate-glutamine cycle is not stoichiometric: fates of glutamate in brain. J Neurosci Res. 2007;85(15):3347–58.

    Article  CAS  PubMed  Google Scholar 

  40. Molinari F, Kaminska A, Fiermonte G, Boddaert N. Mutations in the mitochondrial glutamate carrier SLC25A22 in neonatal epileptic encephalopathy with suppression bursts. Clin Genet. 2009;76(2):188–94.

    Article  CAS  PubMed  Google Scholar 

  41. Tzoulis C, Neckelmann G, Mørk SJ, et al. Localized cerebral energy failure in DNA polymerase gamma-associated encephalopathy syndromes. Brain. 2010;133(Pt 5):1428–37.

    Article  PubMed  Google Scholar 

  42. Lee YM, Kang HC, Lee JS, et al. Mitochondrial respiratory chain defects: underlying etiology in various epileptic conditions. Epilepsia. 2008;49(4):685–90.

    Article  PubMed  Google Scholar 

  43. Elliott HR, Samuels DC, Eden JA, et al. Pathogenic mitochondrial DNA mutations are common in the general population. Am J Hum Genet. 2008;83(2):254–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Uusimaa J, Hinttala R, Rantala H, et al. Homozygous W748S mutation in the POLG1 gene in patients with juvenile-onset Alpers syndrome and status epilepticus. Epilepsia. 2008;49(6):1038–45.

    Article  CAS  PubMed  Google Scholar 

  45. Pronicka E, Weglewska-Jurkiewicz A, et al. Drug-resistant epilepsia and fulminant valproate liver toxicity. Alpers-Huttenlocher syndrome in two children confirmed post mortem by identification of p.W748S mutation in POLG gene. Med Sci Monit. 2011;17(4):CR203–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Saneto RP, Lee IC, Koenig MK, et al. POLG DNA testing as an emerging standard of care before instituting valproic acid therapy for pediatric seizure disorders. Seizure. 2010;19(3):140–6.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Lin CM, Thajeb P. Valproic acid aggravates epilepsy due to MELAS in a patient with an A3243G mutation of mitochondrial DNA. Metab Brain Dis. 2007;22(1):105–9.

    Article  CAS  PubMed  Google Scholar 

  48. Lam CW, Lau CH, Williams JC, et al. Mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) triggered by valproate therapy. Eur J Pediatr. 1997;156(7):562–4.

    Article  CAS  PubMed  Google Scholar 

  49. Galimberti CA, Diegoli M, Sartori I, et al. Brain pseudoatrophy and mental regression on valproate and a mitochondrial DNA mutation. Neurology. 2006;67(9):1715–7.

    Article  CAS  PubMed  Google Scholar 

  50. Chaudhry N, Patidar Y, Puri V. Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes unveiled by valproate. J Pediatr Neurosci. 2013;8(2):135–7.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Kaufman KR, Zuber N, Rueda-Lara MA, Tobia A. MELAS with recurrent complex partial seizures, nonconvulsive status epilepticus, psychosis, and behavioral disturbances: case analysis with literature review. Epilepsy Behav. 2010;18(4):494–7.

    Article  PubMed  Google Scholar 

  52. Bindoff LA, Engelsen BA. Mitochondrial diseases and epilepsy. Epilepsia. 2012;53 Suppl 4:92–7.

    Article  CAS  PubMed  Google Scholar 

  53. Corda D, Rosati G, Deiana GA, Sechi G. "Erratic" complex partial status epilepticus as a presenting feature of MELAS. Epilepsy Behav. 2006;8(3):655–8.

    Article  PubMed  Google Scholar 

  54. Chiyonobu T, Noda R, Yoshida M, et al. Intestinal pseudo-obstruction in a patient with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) associated with phenytoin therapy. Brain Dev. 2008;30(6):430–3.

    Article  PubMed  Google Scholar 

  55. Berger I, Segal I, Shmueli D, Saada A. The effect of antiepileptic drugs on mitochondrial activity: a pilot study. J Child Neurol. 2010;25(5):541–5.

    Article  PubMed  Google Scholar 

  56. Arpin S, Lagrue E, Bodard S, et al. Basal ganglia neuroprotection with anticonvulsants after energy stress: a comparative study. Metab Brain Dis. 2009;24(3):453–61.

    Article  CAS  PubMed  Google Scholar 

  57. Mancuso M, Galli R, Pizzanelli C, et al. Antimyoclonic effect of levetiracetam in MERRF syndrome. J Neurol Sci. 2006;243(1–2):97–9.

    Article  CAS  PubMed  Google Scholar 

  58. Rahman S. Mitochondrial disease and epilepsy. Dev Med Child Neurol. 2012;54(5):397–406.

    Article  PubMed  Google Scholar 

  59. Martikainen MH, Päivärinta M, Jääskeläinen S, Majamaa K. Successful treatment of POLG-related mitochondrial epilepsy with antiepileptic drugs and low glycaemic index diet. Epileptic Disord. 2012;14(4):438–41.

    PubMed  Google Scholar 

  60. Joshi CN, Greenberg CR, Mhanni AA, Salman MS. Ketogenic diet in Alpers-Huttenlocher syndrome. Pediatr Neurol. 2009;40(4):314–6.

    Article  PubMed  Google Scholar 

  61. El Sabbagh S, Lebre AS, Bahi-Buisson N. Epileptic phenotypes in children with respiratory chain disorders. Epilepsia. 2010;51(7):1225–35.

    Article  PubMed  Google Scholar 

  62. Kang HC, Lee YM, Kim HD, et al. Safe and effective use of the ketogenic diet in children with epilepsy and mitochondrial respiratory chain complex defects. Epilepsia. 2007;48(1):82–8.

    CAS  PubMed  Google Scholar 

  63. Pineda M, Ormazabal A, López-Gallardo E, et al. Cerebral folate deficiency and leukoencephalopathy caused by a mitochondrial DNA deletion. Ann Neurol. 2006;59(2):394–8.

    Article  CAS  PubMed  Google Scholar 

  64. Prüss H, Holtkamp M. Ketamine successfully terminates malignant status epilepticus. Epilepsy Res. 2008;82(2–3):219–22.

    Article  PubMed  Google Scholar 

  65. Koga Y, Povalko N, Katayama K, et al. Beneficial effect of pyruvate therapy on Leigh syndrome due to a novel mutation in PDH E1alpha gene. Brain Dev. 2012;34(2):87–91.

    Article  PubMed  Google Scholar 

  66. Ribacoba R, Salas-Puig J, González C, Astudillo A. Characteristics of status epilepticus in MELAS. Analysis of four cases. Neurologia. 2006;21(1):1–11.

    CAS  PubMed  Google Scholar 

  67. Pfeffer G, Horvath R, Klopstock T, et al. New treatments for mitochondrial disease-no time to drop our standards. Nat Rev Neurol. 2013;9(8):474–81.

    Article  CAS  PubMed  Google Scholar 

  68. Gurrieri C, Kivela JE, Bojanić K, et al. Anesthetic considerations in mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes syndrome: a case series. Can J Anaesth. 2011;58:751–63.

    Article  PubMed  Google Scholar 

  69. Kubota H, Tanabe Y, Takanashi JI, Kohno Y. Episodic hyponatremia in mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes (MELAS). J Child Neurol. 2005;20:116–20.

    Article  PubMed  Google Scholar 

  70. Roberts NK, Perloff JK, Kark RA. Cardiac conduction in the Kearns-Sayre syndrome (a neuromuscular disorder associated with progressive external ophthalmoplegia and pigmentary retinopathy). Report of 2 cases and review of 17 published cases. Am J Cardiol. 1979;44:1396–400.

    Article  CAS  PubMed  Google Scholar 

  71. Sproule DM, Kaufmann P, Engelstad K, et al. Wolff-Parkinson-White syndrome in patients with MELAS. Arch Neurol. 2007;64:1625–7.

    Article  PubMed  Google Scholar 

  72. Muravchick S, Levy RJ. Clinical implications of mitochondrial dysfunction. Anesthesiology. 2006;105:819–37.

    Article  CAS  PubMed  Google Scholar 

  73. Thompson VA, Wahr JA. Anesthetic considerations in patients presenting with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome. Anesth Analg. 1997;85:1404–6.

    CAS  PubMed  Google Scholar 

  74. Sasano N, Fujita Y, So M, Sobue K, Sasano H, Katsuya H. Anesthetic management of a patient with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) during laparotomy. J Anesth. 2007;21:72–5.

    Article  PubMed  Google Scholar 

  75. Wallace JJ, Perndt H, Skinner M. Anaesthesia and mitochondrial disease. Paediatr Anaesth. 1998;8:249–54.

    Article  CAS  PubMed  Google Scholar 

  76. Morgan PG, Hoppel CL, Sedensky MM. Mitochondrial defects and anesthetic sensitivity. Anesthesiology. 2002;96:1268–70.

    Article  PubMed  Google Scholar 

  77. James RH. Induction agent sensitivity and ophthalmoplegia plus. Anaesthesia. 1986;41:216.

    Article  CAS  PubMed  Google Scholar 

  78. Driessen J, Willems S, Dercksen S, et al. Anesthesia-related morbidity and mortality after surgery for muscle biopsy in children with mitochondrial defects. Paediatr Anaesth. 2007;17:16–21.

    Article  PubMed  Google Scholar 

  79. Wisely NA, Cook PR. General anaesthesia in a man with mitochondrial myopathy undergoing eye surgery. Eur J Anaesthesiol. 2001;18:333–5.

    Article  CAS  PubMed  Google Scholar 

  80. Naguib M, el Dawlatly AA, Ashour M, Al-Bunyan M. Sensitivity to mivacurium in a patient with mitochondrial myopathy. Anesthesiology. 1996;84:1506–9.

    Article  CAS  PubMed  Google Scholar 

  81. Finsterer J, Stratil U, Bittner R, Sporn P. Increased sensitivity to rocuronium and atracurium in mitochondrial myopathy. Can J Anaesth. 1998;45:781–4.

    Article  CAS  PubMed  Google Scholar 

  82. D'Ambra MN, Dedrick D, Savarese JJ. Kearns-Sayer syndrome and pancuronium–succinylcholine-induced neuromuscular blockade. Anesthesiology. 1979;51:343–5.

    Article  PubMed  Google Scholar 

  83. Kelly A, O'Connor M. Mitochondrial myopathy and anaesthesia. Anaesthesia. 1990;45:596.

    Article  CAS  PubMed  Google Scholar 

  84. Aouad M, Gerges F, Baraka A. Resistance to cisatracurium in a patient with MELAS syndrome. Paediatr Anaesth. 2005;15:1124–7.

    PubMed  Google Scholar 

  85. Singer M. The role of mitochondrial dysfunction in sepsis-induced multi-organ failure. Virulence. 2014;5(1):66–72.

    Google Scholar 

  86. Ruggieri AJ, Levy RJ, Deutschman CS. Mitochondrial Dysfunction and Resuscitation in Sepsis. Crit Care Clin. 2010;26:567–75.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Cheng G, Kong RH, Zhang LM, Zhang JN. Mitochondria in traumatic brain injury and mitochondrial-targeted multipotential therapeutic strategies. Br J Pharmacol. 2012;167:699–719.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Kozlov AV, Bahrami S, Calzia E, et al. Mitochondrial dysfunction and biogenesis: do ICU patients die from mitochondrial failure? Ann Intensive Care. 2011;1:41.

    Article  PubMed Central  PubMed  Google Scholar 

  89. Crouser ED. Autophagy, the First Step towards Recovery from Critical Illness*. Crit Care Med. 2013;41:358–9.

    Article  PubMed  Google Scholar 

  90. Carré JE, Orban JC, Re L, et al. Survival in Critical Illness Is Associated with Early Activation of Mitochondrial Biogenesis. Am J Respir Crit Care Med. 2010;182:745–51.

    Article  PubMed Central  PubMed  Google Scholar 

  91. Kane JM, Rossi J, Tsao S, Burton BK. Metabolic Cardiomyopathy and Mitochondrial Disorders in the Pediatric Intensive Care Unit. J Pediatr. 2007;151:538–41.

    Article  PubMed  Google Scholar 

  92. Schreiber JM, Zelleke T, Gaillard WD, et al. Continuous Video EEG for Patients with Acute Encephalopathy in a Pediatric Intensive Care Unit. Neurocrit Care. 2012;17:31–8.

    Article  PubMed  Google Scholar 

  93. Towne AR, Waterhouse EJ, Boggs JG, et al. Prevalence of nonconvulsive status epilepticus in comatose patients. Am Acad Neurol. 2000;54:340–5.

    CAS  Google Scholar 

  94. Silva MFB, Aires CCP, Luis PBM, et al. Valproic acid metabolism and its effects on mitochondrial fatty acid oxidation: a review. J Inherit Metab Dis. 2008;31:205–16.

    Article  CAS  PubMed  Google Scholar 

  95. Koga Y, Ishibashi M, Ueki I, et al. Effects of L-arginine on the acute phase of strokes in three patients with MELAS. Neurology. 2002;58:827–8.

    Article  CAS  PubMed  Google Scholar 

  96. Koga Y, Akita Y, Nishioka J, et al. L-Arginine improves the symptoms of stroke like episodes in MELAS. Neurology. 2005;64:710–2.

    Article  CAS  PubMed  Google Scholar 

  97. Koga Y, Povalko N, Nishioka J, et al. Biochim Biophys Acta. 1820;2012:608–14.

    Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Sumit Parikh has served on boards for the United Mitochondrial Disease Foundation, the International Foundation for CDKL5 Research, and the Cyclic Vomiting Syndrome Association; has served as a consultant for GeneDx Laboratories; has received grant support from the NIH/NAMDC; and has served on the speakers bureau for UMDF.

Andrea Gropman has received grant support from the North American Mitochondrial Consortium and has received payment for development of educational presentations from Shire.

Sreenivas Avula, Scott Demarest, and Jonathan Kurz declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Gropman MD.

Additional information

This article is part of the Topical Collection on Pediatric Neurology

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avula, S., Parikh, S., Demarest, S. et al. Treatment of Mitochondrial Disorders. Curr Treat Options Neurol 16, 292 (2014). https://doi.org/10.1007/s11940-014-0292-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11940-014-0292-7

Keywords

Navigation