Skip to main content
Log in

Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) and Its Inhibitors: a Review of Physiology, Biology, and Clinical Data

  • Prevention (P Natarajan, Section Editor)
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Opinion statement

Atherosclerotic cardiovascular disease (ASCVD) remains the number one killer in the western world. Low-density lipoprotein cholesterol (LDL-C) reduction with statins and ezetimibe has been shown to reduce the risk of cardiovascular events. Now, proprotein convertase subtilisin/kexin type 9 (PCSK9) monoclonal antibodies (mabs) are available for high-risk individuals with ASCVD or familial hypercholesterolemia on maximally tolerated statin therapy but requiring greater LDL-C reduction. PCSK9 mab outcome trial results from the Further Cardiovascular Outcomes Research with PCSK9 Inhibitions in Subjects with Elevated Risk (FOURIER) study, which was presented at the American College of Cardiology in March 2017, which demonstrated a decrease of 15% in primary and 20% secondary end points over a 2-year period [1••]. These results firmly demonstrated additional benefit beyond maximally tolerated statin therapy in high-risk individuals. Thus, management of LDL-C will soon become more complex, as a new class of medication is added to our standard armamentarium. This review explores the discovery of PCSK9, its biology and physiology, and the development of the PCSK9 mabs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Sabatine, Marc S., et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med. (2017). FOURIER serves as a monumental PCSK9 outcomes trial, which showed decreased cardiovascular events when patients were given PCSK9 inhibitor in addition to background statin therapy. FOURIER helped highlight the future scope of PCSK9 inhibitors in lipid management.

  2. Abifadel M, Varret M, Rabès JP, Allard D, Ouguerram K, Devillers M, et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet. 2003;34(2):154–6.

    Article  CAS  PubMed  Google Scholar 

  3. Cohen JC, Boerwinkle E, Mosley TH Jr, Hobbs HH. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J med. 2006;354(12):1264–72.

    Article  CAS  PubMed  Google Scholar 

  4. Abifadel M, Rabès JP, Devillers M, Munnich A, Erlich D, Junien C, et al. Mutations and polymorphisms in the proprotein convertase subtilisin kexin 9 (PCSK9) gene in cholesterol metabolism and disease. Hum Mutat. 2009;30(4):520–9.

    Article  CAS  PubMed  Google Scholar 

  5. Abifadel M, Guerin M, Benjannet S, Rabès JP, Le Goff W, Julia Z, et al. Identification and characterization of new gain-of-function mutations in the PCSK9 gene responsible for autosomal dominant hypercholesterolemia. Atherosclerosis. 2012;223(2):394–400.

    Article  CAS  PubMed  Google Scholar 

  6. Ference BA, Yoo W, Alesh I, Mahajan N, Mirowska KK, Mewada A, et al. Effect of long-term exposure to lower low-density lipoprotein cholesterol beginning early in life on the risk of coronary heart disease. J am Coll Cardiol. 2012;60(25):2631–9.

    Article  CAS  PubMed  Google Scholar 

  7. Benn M, Nordestgaard BG, Grande P, Schnohr P, Tybjærg-Hansen A. PCSK9R46L, low-density lipoprotein cholesterol levels, and risk of ischemic heart disease: 3 independent studies and meta-analyses. J am Coll Cardiol. 2010;55(25):2833–42.

    Article  CAS  PubMed  Google Scholar 

  8. Huang CC, Fornage M, Lloyld-Jones DM, Wei GS, Boerwinkle E, Liu K. Longitudinal association of PCSK9 sequence variations with LDL-cholesterol levels: the Coronary Artery Risk Development in Young Adults (CARDIA) Study. Circulation: Cardiovascular Genetics. Circ Gen. 2009;108.

  9. Piper DE, Jackson S, Liu Q, Romanow WG, Shetterly S, Thibault ST, et al. The crystal structure of PCSK9: a regulator of plasma LDL-cholesterol. Structure. 2007;15(5):545–52.

    Article  CAS  PubMed  Google Scholar 

  10. Trialists, Cholesterol Treatment. Efficacy and safety of LDL-lowering therapy among men and women: meta-analysis of individual data from 174 000 participants in 27 randomised trials. Lancet. 2015;385(9976):1397–405.

    Article  Google Scholar 

  11. •• Cannon CP, Blazing MA, Giugliano RP, McCagg A, White JA, Theroux P, et al. Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J med. 2015;372(25):2387–97. IMPROVE-IT showcased the non-statin medication, ezetimibe, when combined with statins, and then decreased the LDL cholesterol value more than as a statin monotherapy, which resulted in lower cardiovascular events.

    Article  CAS  PubMed  Google Scholar 

  12. •• Silverman MG, Ference BA, Im K, Wiviott SD, Giugliano RP, Grundy SM, et al. Association between lowering LDL-C and cardiovascular risk reduction among different therapeutic interventions: a systematic review and meta-analysis. JAMA. 2016;316(12):1289–97. The investigators employed a meta-regression analysis to show that the relative risk of cardiovascular events per LDL-C reduction was similar between statins and other medications which work via LDL receptor upregulation.

    Article  CAS  PubMed  Google Scholar 

  13. Roth EM, McKenney JM, Hanotin C, Asset G, Stein EA. Atorvastatin with or without an antibody to PCSK9 in primary hypercholesterolemia. N Engl J Med. 2012;367(20):1891–900.

    Article  CAS  PubMed  Google Scholar 

  14. Urban D, Pöss J, Böhm M, Laufs U. Targeting the proprotein convertase subtilisin/kexin type 9 for the treatment of dyslipidemia and atherosclerosis. J Am Coll Cardiol. 2013;62(16):1401–8.

    Article  CAS  PubMed  Google Scholar 

  15. Shimada YJ, Cannon CP. PCSK9 (proprotein convertase subtilisin/kexin type 9) inhibitors: past, present, and the future. Eur Heart J. 2015;36(36):2415–24.

    Article  PubMed  Google Scholar 

  16. Chapman MJ, Stock JK, Ginsberg HN. PCSK9 inhibitors and cardiovascular disease: heralding a new therapeutic era. Curr Opin Lipidol. 2015;26(6):511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tang Z, Jiang L, Peng J, Ren Z, Wei D, Wu C, et al. PCSK9 siRNA suppresses the inflammatory response induced by oxLDL through inhibition of NF-κB activation in THP-1-derived macrophages. Int J Mol Med. 2012;30(4):931–8.

    CAS  PubMed  Google Scholar 

  18. Wu CY, Tang ZH, Jiang L, Li XF, Jiang ZS, Liu LS. PCSK9 siRNA inhibits HUVEC apoptosis induced by ox-LDL via Bcl/Bax–caspase9–caspase3 pathway. Mol Cell Biochem. 2012;359(1–2):347–58.

    Article  CAS  PubMed  Google Scholar 

  19. Baitsch D, Bock HH, Engel T, Telgmann R, Müller-Tidow C, Varga G, et al. Apolipoprotein E induces antiinflammatory phenotype in macrophages. Arterioscler Thromb Vasc Biol. 2011;31(5):1160–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ferri N, Tibolla G, Pirillo A, Cipollone F, Mezzetti A, Pacia S, et al. Proprotein convertase subtilisin kexin type 9 (PCSK9) secreted by cultured smooth muscle cells reduces macrophages LDLR levels. Atherosclerosis. 2012;220(2):381–6.

    Article  CAS  PubMed  Google Scholar 

  21. Seidah NG, Awan Z, Chrétien M, Mbikay M. PCSK9. Circ Res. 2014;114(6):1022–36.

    Article  CAS  PubMed  Google Scholar 

  22. Lagor WR, Millar JS. Overview of the LDL receptor: relevance to cholesterol metabolism and future approaches for the treatment of coronary heart disease. J Receptor Ligand Channel res. 2010;3:1–14.

    CAS  Google Scholar 

  23. Gupta S. Development of proprotein convertase subtilisin/kexin type 9 inhibitors and the clinical potential of monoclonal antibodies in the management of lipid disorders. Vasc Health Risk Manag. 2016;12:421.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Navarese EP, Kołodziejczak M, Kereiakes DJ, Tantry US, O'connor C, Gurbel PA. Proprotein convertase subtilisin/kexin type 9 monoclonal antibodies for acute coronary syndrome: a narrative review role of PCSK9 inhibition in ACS. Ann Intern med. 2016;164(9):600–7.

    Article  PubMed  Google Scholar 

  25. Poirier S, Mayer G, Benjannet S, Bergeron E, Marcinkiewicz J, Nassoury N, et al. The proprotein convertase PCSK9 induces the degradation of low density lipoprotein receptor (LDLR) and its closest family members VLDLR and ApoER2. J Biol Chem. 2008;283(4):2363–72.

    Article  CAS  PubMed  Google Scholar 

  26. Cheng JM, Oemrawsingh RM, Garcia-Garcia HM, Boersma E, van Geuns RJ, Serruys PW, et al. PCSK9 in relation to coronary plaque inflammation: results of the ATHEROREMO-IVUS study. Atherosclerosis. 2016;248:117–22.

    Article  CAS  PubMed  Google Scholar 

  27. Nissen SE, Tuzcu EM, Schoenhagen P, Brown BG, Ganz P, Vogel RA, et al. Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis: a randomized controlled trial. JAMA. 2004;291(9):1071–80.

    Article  CAS  PubMed  Google Scholar 

  28. Nicholls SJ, Ballantyne CM, Barter PJ, Chapman MJ, Erbel RM, Libby P, et al. Effect of two intensive statin regimens on progression of coronary disease. N Engl J Med. 2011;365(22):2078–87.

    Article  CAS  PubMed  Google Scholar 

  29. Nissen SE, Nicholls SJ, Sipahi I, Libby P, Raichlen JS, Ballantyne CM, et al. Effect of very high-intensity statin therapy on regression of coronary atherosclerosis: the ASTEROID trial. JAMA. 2006;295(13):1556–65.

    Article  CAS  PubMed  Google Scholar 

  30. O’Keefe JH, Cordain L, Harris WH, Moe RM, Vogel R. Optimal low-density lipoprotein is 50 to 70 mg/dl: lower is better and physiologically normal. J Am Coll Cardiol. 2004;43(11):2142–6.

    Article  PubMed  Google Scholar 

  31. Koren MJ, Scott R, Kim JB, Knusel B, Liu T, Lei L, et al. Efficacy, safety, and tolerability of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 as monotherapy in patients with hypercholesterolaemia (MENDEL): a randomised, double-blind, placebo-controlled, phase 2 study. Lancet. 2012;380(9858):1995–2006.

    Article  CAS  PubMed  Google Scholar 

  32. Robinson JG, Nedergaard BS, Rogers WJ, Fialkow J, Neutel JM, Ramstad D, et al. Effect of evolocumab or ezetimibe added to moderate-or high-intensity statin therapy on LDL-C lowering in patients with hypercholesterolemia: the LAPLACE-2 randomized clinical trial. JAMA. 2014;311(18):1870–83.

    Article  PubMed  Google Scholar 

  33. Stroes E, Colquhoun D, Sullivan D, Civeira F, Rosenson RS, Watts GF, et al. Anti-PCSK9 antibody effectively lowers cholesterol in patients with statin intolerance: the GAUSS-2 randomized, placebo-controlled phase 3 clinical trial of evolocumab. J Am Coll Cardiol. 2014;63(23):2541–8.

    Article  CAS  PubMed  Google Scholar 

  34. Nissen SE, Stroes E, Dent-Acosta RE, Rosenson RS, Lehman SJ, Sattar N, et al. Efficacy and tolerability of evolocumab vs ezetimibe in patients with muscle-related statin intolerance: the GAUSS-3 randomized clinical trial. JAMA. 2016;315(15):1580–90.

    Article  CAS  PubMed  Google Scholar 

  35. Raal FJ, Stein EA, Dufour R, Turner T, Civeira F, Burgess L, et al. PCSK9 inhibition with evolocumab (AMG 145) in heterozygous familial hypercholesterolaemia (RUTHERFORD-2): a randomised, double-blind, placebo-controlled trial. Lancet. 2015;385(9965):331–40.

    Article  CAS  PubMed  Google Scholar 

  36. •• Blom DJ, Hala T, Bolognese M, Lillestol MJ, Toth PD, Burgess L, et al. A 52-week placebo-controlled trial of evolocumab in hyperlipidemia. N Engl J Med. 2014;370(19):1809–19. The DESCARTES study validates the sustained LDL-C reduction seen with PCSK9 inhibitor over a 52-week period. Furthermore, the study also highlights the important positive correlations between PCSK9 and other elements of atherosclerosis, specifically lipoprotein (a).

    Article  CAS  PubMed  Google Scholar 

  37. Jellinger PS, Handelsman Y, Rosenblit PD, Bloomgarden ZT, Fonseca VA, Garber AJ, Grunberger G, Guerin CK, Bell DS, Mechanick JI, Pessah-Pollack R. American Association of Clinical Endocrinologists and American College of Endocrinology guidelines for management of dyslipidemia and prevention of cardiovascular disease. Endocr Pract. 2017;23(s2):1–87.

  38. Jacobson TA, Ito MK, Maki KC, Orringer CE, Bays HE, Jones PH, et al. National Lipid Association recommendations for patient-centered management of dyslipidemia: part 1—executive summary. J Clin Lipidol. 2014;8(5):473–88.

    Article  PubMed  Google Scholar 

  39. Reiner Z, Catapano AL, De Backer G, Graham I, Taskinen MR, Wiklund O, et al. The task force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS). ESC/EAS guidelines for the management of dyslipidaemias. Eur Heart J. 2011;32(14):1769–818.

    Article  PubMed  Google Scholar 

  40. Grundy SM, Arai H, Barter P, Bersot TP, Betteridge DJ, Carmena R, et al. An International Atherosclerosis Society position paper: global recommendations for the management of dyslipidemia-full report. J Clin Lipidol. 2014;8(1):29–60.

    Article  Google Scholar 

  41. Nicholls SJ, Hsu A, Wolski K, Hu B, Bayturan O, Lavoie A, et al. Intravascular ultrasound-derived measures of coronary atherosclerotic plaque burden and clinical outcome. J Am Coll Cardiol. 2010;55(21):2399–407.

    Article  PubMed  Google Scholar 

  42. Puri R, Nissen SE, Shao M, Ballantyne CM, Barter PJ, Chapman MJ, et al. Coronary atheroma volume and cardiovascular events during maximally intensive statin therapy. Eur Heart J. 2013;34(41):3182–90.

    Article  CAS  PubMed  Google Scholar 

  43. Calvert PA, Obaid DR, O'Sullivan M, Shapiro LM, McNab D, Densem CG, et al. Association between IVUS findings and adverse outcomes in patients with coronary artery disease. J Am Coll Cardiol Img. 2011;4(8):894–901.

    Article  Google Scholar 

  44. Nicholls SJ, Puri R, Anderson T, Ballantyne CM, Cho L, Kastelein JJ, et al. Effect of evolocumab on progression of coronary disease in statin-treated patients: the GLAGOV randomized clinical trial. JAMA. 2016;316(22):2373–84.

    Article  CAS  PubMed  Google Scholar 

  45. Sabatine MS, Giugliano RP, Wiviott SD, Raal FJ, Blom DJ, Robinson J, et al. Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015;372(16):1500–9.

    Article  CAS  PubMed  Google Scholar 

  46. Robinson JG, Farnier M, Krempf M, Bergeron J, Luc G, Averna M, et al. Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015;372(16):1489–99.

    Article  CAS  PubMed  Google Scholar 

  47. Sabatine MS, Giugliano RP, Keech A, Honarpour N, Wang H, Liu T, et al. Rationale and design of the Further cardiovascular OUtcomes Research with PCSK9 Inhibition in subjects with Elevated Risk trial. Am Heart J. 2016;173:94–101.

    Article  CAS  PubMed  Google Scholar 

  48. Schwartz GG, Bessac L, Berdan LG, Bhatt DL, Bittner V, Diaz R, et al. Effect of alirocumab, a monoclonal antibody to PCSK9, on long-term cardiovascular outcomes following acute coronary syndromes: rationale and design of the ODYSSEY outcomes trial. Am Heart J. 2014;168(5):682–9.

    Article  CAS  PubMed  Google Scholar 

  49. Stone NJ, Robinson JG, Lichtenstein AH, Merz CN, Blum CB, Eckel RH, et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults. Circulation. 2014;129(25 suppl 2):S1–45.

    Article  PubMed  Google Scholar 

  50. Lloyd-Jones DM, Morris PB, Ballantyne CM, Birtcher KK, Daly DD, DePalma SM, et al. 2016 ACC expert consensus decision pathway on the role of non-statin therapies for LDL-cholesterol lowering in the management of atherosclerotic cardiovascular disease risk. J Am Coll Cardiol. 2016;68(1):92.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashwin Durairaj MD.

Ethics declarations

Conflict of Interest

Ashwin Durairaj, Alberto Sabates, Jonathan Nieves, and Brian Moraes declare that they have no conflicts of interest. Seth Baum reports Clinical Research, Consulting, Scientific Advisory Boards, and Speaking: Amgen, Regeneron/Sanofi, Lily, BI, Aegerion, AstraZeneca.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Prevention

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durairaj, A., Sabates, A., Nieves, J. et al. Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) and Its Inhibitors: a Review of Physiology, Biology, and Clinical Data. Curr Treat Options Cardio Med 19, 58 (2017). https://doi.org/10.1007/s11936-017-0556-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11936-017-0556-0

Keywords

Navigation