Skip to main content

Advertisement

Log in

Overview of Benchtop Models for Comparison of Surgical Treatments for Benign Prostatic Hyperplasia

  • Published:
Current Urology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Benign prostatic hyperplasia (BPH) is a disease of the lower urinary tract which often requires surgical treatment. Recently, there has been a deluge of new treatment options, rarely validated or compared to current treatments on a benchtop model. The purpose of this review is to examine the literature and report which benchtop models are currently being used, which therapies have been tested on them, and what outcomes are being studied on each model.

Recent Findings

There are various benchtop models to choose from, each with their unique benefits and drawbacks. Perfused porcine kidney models are used to assess bleeding on the benchtop, ex-vivo human prostate helps to see specific interactions of devices with the prostatic tissue, and all other models have evaluated tissue ablation rates and depth of coagulation. There are currently no synthetic or non-animal tissues being used for this purpose, and surgical techniques such as enucleation, water-jet ablation, prostate stents, and water vapor thermal therapy have no representation in these benchtop tests.

Summary

Benchtop testing serves an important role in the evaluation and comparison of surgical treatments for BPH. This testing allows these therapies to be objectively compared to one another, helping novel medical devices in their path to market and urologists make treatment decisions. Future directions may include further validation of the animal models currently being used and development of synthetic models which mimic the prostate on the benchtop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Wei JT, Calhoun E, Jacobsen SJ. Urologic diseases in America project: benign prostatic hyperplasia. J Urol. 2005;173(4):1256–61. https://doi.org/10.1097/01.ju.0000155709.37840.fe.

    Article  PubMed  Google Scholar 

  2. McVary KT, Roehrborn CG, Avins AL, Barry MJ, Bruskewitz RC, Donnell RF, et al. Update on AUA guideline on the management of benign prostatic hyperplasia. J Urol. 2011;185(5):1793–803. https://doi.org/10.1016/j.juro.2011.01.074.

    Article  PubMed  Google Scholar 

  3. Miernik A, Gratzke C. Current treatment for benign prostatic hyperplasia. Dtsch Arztebl Int. 2020;117(49):843–54. https://doi.org/10.3238/arztebl.2020.0843.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lokeshwar SD, Harper BT, Webb E, Jordan A, Dykes TA, Neal DE Jr, et al. Epidemiology and treatment modalities for the management of benign prostatic hyperplasia. Transl Androl Urol. 2019;8(5):529–39. https://doi.org/10.21037/tau.2019.10.01.

    Article  PubMed  PubMed Central  Google Scholar 

  5. • Huang SW, Tsai CY, Tseng CS, Shih MC, Yeh YC, Chien KL, et al. Comparative efficacy and safety of new surgical treatments for benign prostatic hyperplasia: systematic review and network meta-analysis. BMJ. 2019;367: l5919. https://doi.org/10.1136/bmj.l5919Comparative meta-analysis of current treatments for BPH.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wendt-Nordahl G, Hacker A, Fastenmeier K, Knoll T, Reich O, Alken P, Michel MS. New bipolar resection device for transurethral resection of the prostate: first ex-vivo and in-vivo evaluation. J Endourol. 2005;19(10):1203–9. https://doi.org/10.1089/end.2005.19.1203.

    Article  PubMed  Google Scholar 

  7. Michel MS, Kohrmann KU, Weber A, Krautschick AW, Alken P. Rotoresect: new technique for resection of the prostate: experimental phase. J Endourol. 1996;10(5):473–8. https://doi.org/10.1089/end.1996.10.473.

    Article  CAS  PubMed  Google Scholar 

  8. Reich O, Schneede P, Zaak D, Siebels M, Hofstetter A. Ex-vivo comparison of the haemostatic properties of standard transurethral resection and transurethral vaporization resection of the prostate. BJU Int. 2003;92(3):319–22. https://doi.org/10.1046/j.1464-410x.2003.04340.x.

    Article  CAS  PubMed  Google Scholar 

  9. Reich O, Schneede P, Corvin S, Zaak D, Sroka R, Hofstetter A. Combination of interstitial laser coagulation and transurethral resection of the prostate: ex vivo evaluations. Urology. 2003;61(6):1172–6. https://doi.org/10.1016/s0090-4295(03)00039-6.

    Article  PubMed  Google Scholar 

  10. Wendt-Nordahl G, Huckele S, Honeck P, Alken P, Knoll T, Michel MS, Hacker A. Systematic evaluation of a recently introduced 2-microm continuous-wave thulium laser for vaporesection of the prostate. J Endourol. 2008;22(5):1041–5. https://doi.org/10.1089/end.2007.0421.

    Article  PubMed  Google Scholar 

  11. Reich O, Bachmann A, Schneede P, Zaak D, Sulser T, Hofstetter A. Experimental comparison of high power (80 W) potassium titanyl phosphate laser vaporization and transurethral resection of the prostate. J Urol. 2004;171(6 Pt 1):2502–4. https://doi.org/10.1097/01.ju.0000128803.04158.76.

    Article  PubMed  Google Scholar 

  12. Wendt-Nordahl G, Hacker A, Reich O, Djavan B, Alken P, Michel MS. The Vista system: a new bipolar resection device for endourological procedures: comparison with conventional resectoscope. Eur Urol. 2004;46(5):586–90. https://doi.org/10.1016/j.eururo.2004.07.018.

    Article  PubMed  Google Scholar 

  13. Hartung R, Leyh H, Liapi C, Fastenmeier K, Barba M. Coagulating intermittent cutting. Improved high-frequency surgery in transurethral prostatectomy. Eur Urol. 2001;39(6):676–81. https://doi.org/10.1159/000052526.

  14. •• Qu L, Wang X, Huang X, Zhang Y, Zeng X. Use of a novel ex-vivo model to compare the hemostatic properties of plasmakinetic resection, transurethral vaporization resection and conventional transurethral resection of the prostate. Urology. 2007;70(5):1034–8. https://doi.org/10.1016/j.urology.2007.09.015Excellent description of ex-vivo model to compare coagulation depth and hemostatic properties of different resection technologies.

    Article  PubMed  Google Scholar 

  15. Qu L, Wang X, Wang H, Huang X. Properties in penetrating capsula of transurethral plasmakinetic resection: comparison with transurethral resection of the prostate in an ex vivo study. Urol Int. 2009;82(1):97–100. https://doi.org/10.1159/000176034.

    Article  PubMed  Google Scholar 

  16. Fagerstrom T, Nyman CR, Hahn RG. Degree of vaporization in bipolar and monopolar resection. J Endourol. 2012;26(11):1473–7. https://doi.org/10.1089/end.2012.0177.

    Article  PubMed  Google Scholar 

  17. Heinrich E, Wendt-Nordahl G, Honeck P, Alken P, Knoll T, Michel MS, Hacker A. 120 W lithium triborate laser for photoselective vaporization of the prostate: comparison with 80 W potassium-titanyl-phosphate laser in an ex-vivo model. J Endourol. 2010;24(1):75–9. https://doi.org/10.1089/end.2009.0051.

    Article  PubMed  Google Scholar 

  18. Wezel F, Wendt-Nordahl G, Huck N, Bach T, Weiss C, Michel MS, Hacker A. New alternatives for laser vaporization of the prostate: experimental evaluation of a 980-, 1,318- and 1,470-nm diode laser device. World J Urol. 2010;28(2):181–6. https://doi.org/10.1007/s00345-009-0499-5.

    Article  PubMed  Google Scholar 

  19. Seitz M, Ruszat R, Bayer T, Tilki D, Bachmann A, Stief C, et al. Ex vivo and in vivo investigations of the novel 1,470 nm diode laser for potential treatment of benign prostatic enlargement. Lasers Med Sci. 2009;24(3):419–24. https://doi.org/10.1007/s10103-008-0591-x.

    Article  PubMed  Google Scholar 

  20. Sroka R, Ackermann A, Tilki D, Reich O, Steinbrecher V, Hofstetter A, et al. In-vitro comparison of the tissue vaporisation capabilities of different lasers. Med Laser Appl. 2008;22(4):227–31. https://doi.org/10.1016/j.mla.2007.10.001.

    Article  Google Scholar 

  21. Ko WJ, Choi BB, Kang HW, Rajabhandharaks D, Rutman M, Osterberg EC. Defining optimal laser-fiber sweeping angle for effective tissue vaporization using 180 W 532 nm lithium triborate laser. J Endourol. 2012;26(4):313–7. https://doi.org/10.1089/end.2011.0356.

    Article  PubMed  Google Scholar 

  22. Kang HW, Kim J, Peng YS. In vitro investigation of wavelength-dependent tissue ablation: laser prostatectomy between 532 nm and 2.01 microm. Lasers Surg Med. 2010;42(3):237–44. https://doi.org/10.1002/lsm.20895.

  23. Bach T, Huck N, Wezel F, Hacker A, Gross AJ, Michel MS. 70 vs 120 W thulium:yttrium-aluminium-garnet 2 microm continuous-wave laser for the treatment of benign prostatic hyperplasia: a systematic ex-vivo evaluation. BJU Int. 2010;106(3):368–72. https://doi.org/10.1111/j.1464-410X.2009.09059.x.

    Article  PubMed  Google Scholar 

  24. Seitz M, Bayer T, Ruszat R, Tilki D, Bachmann A, Gratzke C, et al. Preliminary evaluation of a novel side-fire diode laser emitting light at 940 nm, for the potential treatment of benign prostatic hyperplasia: ex-vivo and in-vivo investigations. BJU Int. 2009;103(6):770–5. https://doi.org/10.1111/j.1464-410X.2008.08066.x.

    Article  PubMed  Google Scholar 

  25. Wendt-Nordahl G, Huckele S, Honeck P, Alken P, Knoll T, Michel MS, Hacker A. 980-nm Diode laser: a novel laser technology for vaporization of the prostate. Eur Urol. 2007;52(6):1723–8. https://doi.org/10.1016/j.eururo.2007.06.029.

    Article  PubMed  Google Scholar 

  26. Reich O, Corvin S, Oberneder R, Sroka R, Muschter R, Hofstetter A. In vitro comparison of transurethral vaporization of the prostate (TUVP), resection of the prostate (TURP), and vaporization-resection of the prostate (TUVRP). Urol Res. 2002;30(1):15–20. https://doi.org/10.1007/s00240-001-0231-4.

    Article  PubMed  Google Scholar 

  27. Ishikawa N, Goya N, Iguchi Y, Toda F, Nishino S, Ishijima M, Toma H. Comparison of the depth of the desiccated zone with selected vaporizing-cutting electrodes: a basic study in animals. BJU Int. 2000;85(6):754–8. https://doi.org/10.1046/j.1464-410x.2000.00512.x.

    Article  CAS  PubMed  Google Scholar 

  28. Akgul T, Nuhoglu B, Polat O, Ayyildiz A, Astarci M, Germiyanoglu C, Ustun H. An in vitro study comparing the coagulation and cautery effects of bipolar and unipolar cutting modalities on prostatic tissue. Urol Int. 2009;83(4):458–62. https://doi.org/10.1159/000251188.

    Article  PubMed  Google Scholar 

  29. • Khorrami MH, Gholipour F, Zargham M, Mohammadi Sichani M, Izadpanahi MH, Alizadeh F, Khorrami F. Electrocoagulation accounts for a significant portion of discrepancy between preoperative ultrasonography prostate size estimation and resected tissue weight. J Endourol. 2020;34(6):671–5. https://doi.org/10.1089/end.2020.0037Useful study clarifying some of the issues with using specimen and tissue weight in calculating volume removed during prostate electrosurgery.

    Article  PubMed  Google Scholar 

  30. Kuntzman RS, Malek RS, Barrett DM, Bostwick DG. High-power (60-watt) potassium-titanyl-phosphate laser vaporization prostatectomy in living canines and in human and canine cadavers. Urology. 1997;49(5):703–8. https://doi.org/10.1016/S0090-4295(97)00232-X.

    Article  CAS  PubMed  Google Scholar 

  31. Seitz M, Reich O, Gratzke C, Schlenker B, Karl A, Bader M, et al. High-power diode laser at 980 nm for the treatment of benign prostatic hyperplasia: ex vivo investigations on porcine kidneys and human cadaver prostates. Lasers Med Sci. 2009;24(2):172–8. https://doi.org/10.1007/s10103-008-0543-5.

    Article  PubMed  Google Scholar 

  32. Kauffman EC, Kang HW, Choi BB. The effect of laser-fiber sweeping speed on the efficiency of photoselective vaporization of the prostate in an ex vivo bovine model. J Endourol. 2009;23(9):1429–35. https://doi.org/10.1089/end.2009.0400.

    Article  PubMed  Google Scholar 

  33. Kang HW, Jebens D, Malek RS, Mitchell G, Koullick E. Laser vaporization of bovine prostate: a quantitative comparison of potassium-titanyl-phosphate and lithium triborate lasers. J Urol. 2008;180(6):2675–80. https://doi.org/10.1016/j.juro.2008.08.009.

    Article  PubMed  Google Scholar 

  34. Yang Y, Sun D, Wei Z, Xu F, Hong B, Zhang X. In vitro study on the vaporization ratio of 2-microm laser in human prostatic tissue. J Huazhong Univ Sci Technolog Med Sci. 2010;30(2):198–200. https://doi.org/10.1007/s11596-010-0213-2.

    Article  PubMed  Google Scholar 

  35. Luo GH, Xia SJ, Sun ZL. In vitro comparison of the vaporesection of human benign prostatic hyperplasia using 70- and 120-W 2-microm lasers. Asian J Androl. 2011;13(4):636–9. https://doi.org/10.1038/aja.2011.19.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Fried NM, Murray KE. High-power thulium fiber laser ablation of urinary tissues at 1.94 microm. J Endourol. 2005;19(1):25–31. https://doi.org/10.1089/end.2005.19.25.

  37. Sun F, Baez-Diaz C, Sanchez-Margallo FM. Canine prostate models in preclinical studies of minimally invasive interventions: part II, benign prostatic hyperplasia models. Transl Androl Urol. 2017;6(3):547–55. https://doi.org/10.21037/tau.2017.03.62.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sun F, Baez-Diaz C, Sanchez-Margallo FM. Canine prostate models in preclinical studies of minimally invasive interventions: part I, canine prostate anatomy and prostate cancer models. Transl Androl Urol. 2017;6(3):538–46. https://doi.org/10.21037/tau.2017.03.61.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Constantinescu GM. The genital apparatus in the ruminant. Comparative Reproductive Biology. 2007;33–48.

  40. Roehrborn CG. Pathology of benign prostatic hyperplasia. Int J Impot Res. 2008;20(Suppl 3):S11–8. https://doi.org/10.1038/ijir.2008.55.

    Article  PubMed  Google Scholar 

  41. Luu T, Gonzalez RR. Residency surgical BPH training paradigms from MIST to HOLEP. Curr Urol Rep. 2023;24(6):261–9. https://doi.org/10.1007/s11934-023-01153-w.

    Article  PubMed  Google Scholar 

  42. Taktak S, Jones P, Haq A, Rai BP, Somani BK. Aquablation: a novel and minimally invasive surgery for benign prostate enlargement. Ther Adv Urol. 2018;10(6):183–8. https://doi.org/10.1177/1756287218760518.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Westwood J, Geraghty R, Jones P, Rai BP, Somani BK. Rezum: a new transurethral water vapour therapy for benign prostatic hyperplasia. Ther Adv Urol. 2018;10(11):327–33. https://doi.org/10.1177/1756287218793084.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

KB and RRG conceived and wrote the manuscript. KB did the literature review, table, and references.

Corresponding author

Correspondence to Kevin Birdsall.

Ethics declarations

Competing Interests

RRG is a consultant and advisory board member for Boston Scientific and Procept Biorobotics. RRG is an investigator for Butterfly Medical, Prodeon, Proverum, and Zenflow. RRG is a shareholder in Procept Biorobotics.

Ethical Approval

Principles of Helsinki Declaration were followed in lieu of formal ethics committee approval.

Conflict of Interest

Dr. Gonzalez is an investigator and consultant for Boston Scientific. He is also a consultant and shareholder for PROCEPT BioRobotics, and an investigator for Butterfly Medical, Prodeon, Proverum, and Zenflow.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Birdsall, K., Gonzalez, R.R. Overview of Benchtop Models for Comparison of Surgical Treatments for Benign Prostatic Hyperplasia. Curr Urol Rep 24, 571–577 (2023). https://doi.org/10.1007/s11934-023-01189-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11934-023-01189-y

Keywords

Navigation