Skip to main content

Advertisement

Log in

Disease Mechanisms in psoriasis and psoriatic arthritis

  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Any hypothesis that tries to explain disease mechanisms in psoriasis and psoriatic arthritis (PsA) must take into account the containment of the inflammatory process to three specific sites: the skin, synovium, and enthesis. This article reviews the recent literature that advances our understanding of disease mechanisms at these specific sites. Additional progress will be achieved by research that focuses on common pathogenic pathways at these sites, in particular when searching for foreign candidates or autoantigens triggering the T-cell-mediated immune response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Schmitt-Egenolf M, Eiermann TH, Boehncke WH, et al.:Familial juvenile onset psoriasis is associated with the human leukocyte antigen (HLA) class I side of the extended haplotype Cw6-B57-DRB1*0701-DQA1*0201-DQB1*0303: a population- and family-based study. J Invest Dermatol 1996, 106:711–714.

    Article  PubMed  CAS  Google Scholar 

  2. Trembath RC, Clough RL, Rosbotham JL, et al.: Identification of a major susceptibility locus on chromosome 6p and evidence for further disease loci revealed by a two stage genome-wide search in psoriasis. Hum Mol Genet 1997, 6:813–820.

    Article  PubMed  CAS  Google Scholar 

  3. Gonzalez S, Martinez-Borra J, Torre-Alonso JC, et al.: The MICA-A9 triplet repeat polymorphism in the transmembrane region confers additional susceptibility to the development of psoriatic arthritis and is independent of the association of Cw*0602 in psoriasis. Arthritis Rheum 1999, 42:1010–1016.

    Article  PubMed  CAS  Google Scholar 

  4. Gonzalez S, Martinez-Borra J, Del Rio JS, et al.: The OTF3 gene polymorphism confers susceptibility to psoriasis independent of the association of HLA-Cw*0602. J Invest Dermatol 2000, 115:824–828.

    Article  PubMed  CAS  Google Scholar 

  5. Nair RP, Stuart P, Henseler T, et al.: Localization of psoriasissusceptibility locus PSORS1 to a 60-kb interval telomeric to HLA-C. Am J Hum Genet 2000, 66:1833–1844. The authors identified a 100-kb region telomeric to HLA-C that contained a risk haplotype 1 (RH1) that exhibited significant linkage disequilibrium with psoriasis but did not carry Cw6. The results suggest that RH1 is likely to carry the disease allele at PSORS1. The results also exclude HLA-C and corneodesmosin with a high degree of confidence.

    Article  PubMed  CAS  Google Scholar 

  6. Asumalahti K, Laitinen T, Itkonen-Vatjus R, et al.: A candidate gene for psoriasis near HLA-C, HCR (Pg8), is highly polymorphic with a disease-associated susceptibility allele. Hum Mol Genet 2000, 9:1533–1542.

    Article  PubMed  CAS  Google Scholar 

  7. Hohler T, Kruger A, Schneider PM, et al.: A TNF-alpha promoter polymorphism is associated with juvenile onset psoriasis and psoriatic arthritis. J Invest Dermatol 1997, 109:562–565.

    Article  PubMed  CAS  Google Scholar 

  8. Al-heresh AM, Cox BM, Dixey J, et al.: TNF alpha-308 and -238 polymorphisms in psoriatic arthritis and the association with HLA-DRB1 genotypes. Arthritis Rheum 1997, 40:S568.

    Google Scholar 

  9. Kaluza W, Reuss E, Grossmann S, et al.: Different transcriptional activity and in vitro TNF-alpha production in psoriasis patients carrying the TNF-alpha 238A promoter polymorphism. J Invest Dermatol 2000, 114:1180–1183.

    Article  PubMed  CAS  Google Scholar 

  10. Matthews D, Fry L, Powles A, et al.: Evidence that a locus for familial psoriasis maps to chromosome 4q. Nat Genet 1996, 14:231–233.

    Article  PubMed  CAS  Google Scholar 

  11. Tomfohrde J, Silverman A, Barnes R, et al.: Gene for familial psoriasis susceptibility mapped to the distal end of human chromosome 17q. Science 1994, 264:1141–1145.

    Article  PubMed  CAS  Google Scholar 

  12. Burden AD, Javed S, Bailey M, et al.: Genetics of psoriasis: paternal inheritance and a locus on chromosome 6p. J Invest Dermatol 1998, 110:958–960.

    Article  PubMed  CAS  Google Scholar 

  13. Rahman MU, Ahmed S, Schumacher HR, et al.: High levels of antipeptidoglycan antibodies in psoriatic and other seronegative arthritides. J Rheumatol 1990, 17:621–625.

    PubMed  CAS  Google Scholar 

  14. Rantakokko K, Rimpilainen M, Uksila J, et al.: Antibodies to streptococcal cell wall in psoriatic arthritis and cutaneous psoriasis. Clin Exp Rheumatol 1997, 15:399–404.

    PubMed  CAS  Google Scholar 

  15. Muto M, Fujikura Y, Hamamoto Y, et al.: Immune response to Streptococcus pyogenes and the susceptibility to psoriasis. Australas J Dermatol 1996, 37:S54–55.

    Google Scholar 

  16. Muto M, Date Y, Ichimiya M, et al.: Significance of antibodies to streptococcal M protein in psoriatic arthritis and their association with HLA-A*0207. Tissue Antigens 1996, 48:645–650.

    Article  PubMed  CAS  Google Scholar 

  17. Wang Q, Vasey FB, Mahfood JP, et al.: V2 regions of 16S ribosomal RNA used as a molecular marker for the species identification of streptococci in peripheral blood and synovial fluid from patients with psoriatic arthritis. Arthritis Rheum 1999, 42:2055–2059.

    Article  PubMed  CAS  Google Scholar 

  18. Brown DW, Baker BS, Ovigne JM, et al.: Skin CD4+ T cells produce interferon-gamma in vitro in response to streptococcal antigens in chronic plaque psoriasis. J Invest Dermatol 2000, 114:576–580.

    Article  PubMed  CAS  Google Scholar 

  19. Yamamoto T, Katayama I, Nishioka K: Peripheral blood mononuclear cell proliferative response against staphylococcal superantigens in patients with psoriasis arthropathy. Eur J Dermatol 1999, 9:17–21.

    PubMed  CAS  Google Scholar 

  20. Thomssen H, Hoffmann B, Schank M, et al.: There is no disease-specific role for streptococci-responsive synovial T lymphocytes in the pathogenesis of psoriatic arthritis. Med Microbiol Immunol (Berl) 2000, 188:203–207. An extensive study to determine if streptococci-reactive T cells played a role in PsA pathogenesis and to elucidate the nature of the peptide stimulating these clones. Thirty percent of T-cell clones responded to group A streptococci but not to an exotoxin-negative strain. The authors subsequently proved that the observed proliferation was due to superantigen responses.

    CAS  Google Scholar 

  21. Nickoloff BJ, Schroder JM, von den Driesch P, et al.: Is psoriasis a T-cell disease? Exp Dermatol 2000, 9:359–375.

    Article  PubMed  CAS  Google Scholar 

  22. Wrone-Smith T, Nickoloff BJ: Dermal injection of immunocytes induces psoriasis. J Clin Invest 1996, 98:1878–1887.

    Article  PubMed  CAS  Google Scholar 

  23. Nickoloff BJ, Wrone-Smith T: Animal models of psoriasis. Nat Med 1997, 3:475–476.

    Article  PubMed  CAS  Google Scholar 

  24. Ridge JP, Di Rosa F, Matzinger P: A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 1998, 393:474–478. The authors describe how the interaction of antigen-specific T-helper and T-killer cells occurs on an antigen-loaded dendritic cell. These three cells need not meet simultaneously. The helper cell can first engage and condition the dendritic cell, which then becomes empowered to stimulate a killer cell. The first step (help) can be bypassed by modulation of the surface molecule CD40, or by viral infection of dendritic cells. This paper provides a possible explanation for the observed increase in PsA incidence and severity in patients infected with HIV.

    Article  PubMed  CAS  Google Scholar 

  25. Nickoloff BJ, Wrone-Smith T: Injection of pre-psoriatic skin with CD4+ T cells induces psoriasis. Am J Pathol 1999, 155:145–158. CD4+ but not CD8+ T-cell lines produced psoriatic lesions in the SCID mouse model. Intra-epidermal resident CD8+ and CD4+ T cells were induced to proliferate and expressed CD25 and CD69. NKR-bearing immunocytes were also observed in 10 of 15 different biopsies of chronic plaques. The authors concluded that injecting CD4+ T cells into symptomless skin activates epidermal T cells and results in NKR expression on resident CD4+ and CD8+ T-cell subsets.

    PubMed  CAS  Google Scholar 

  26. Nickoloff BJ, Bonish B, Huang BB, et al.: Characterization of a T cell line bearing natural killer receptors and capable of creating psoriasis in a SCID mouse model system. J Dermatol Sci 2000, 24:212–225.

    Article  PubMed  CAS  Google Scholar 

  27. Austin LM, Ozawa M, Kikuchi T, et al.: The majority of epidermal T cells in Psoriasis vulgaris lesions can produce type 1 cytokines, interferon-gamma, interleukin-2, and tumor necrosis factor-alpha, defining TC1 (cytotoxic T lymphocyte) and TH1 effector populations: a type 1 differentiation bias is also measured in circulating blood T cells in psoriatic patients. J Invest Dermatol 1999, 113:752–759.

    Article  PubMed  CAS  Google Scholar 

  28. Costello P, Bresnihan B, O’Farrelly C, et al.: Predominance of CD8+ T lymphocytes in psoriatic arthritis. J Rheumatol 1999, 26:1117–1124. Flow cytometric study revealing a preponderance of CD8+ T-cells in PsA synovial fluid. These cells were of an activated (HLA-DR+) and mature (CD45RO+) phenotype, suggesting a role for CD8+ T-cells in this class I-mediated disease.

    PubMed  CAS  Google Scholar 

  29. Dunky A, Neumuller J, Menzel J: Interactions of lymphocytes from patients with psoriatic arthritis or healthy controls and cultured endothelial cells. Clin Immunol Immunopathol 1997, 85:297–314.

    Article  PubMed  CAS  Google Scholar 

  30. Ritchlin C, Haas-Smith SA, Hicks D, et al.: Patterns of cytokine production in psoriatic synovium. J Rheumatol 1998, 25:1544–1552.

    PubMed  CAS  Google Scholar 

  31. Canete JD, Martinez SE, Farres J, et al.: Differential Th1/Th2 cytokine patterns in chronic arthritis: interferon gamma is highly expressed in synovium of rheumatoid arthritis compared with seronegative spondyloarthropathies. Ann Rheum Dis 2000, 59:263–268.

    Article  PubMed  CAS  Google Scholar 

  32. Danning CL, Illei GG, Hitchon C, et al.: Macrophage-derived cytokine and nuclear factor kappaB p65 expression in synovial membrane and skin of patients with psoriatic arthritis. Arthritis Rheum 2000, 43:1244–1256. These authors performed immunohistochemical analysis of a range of cytokines in skin and synovium of PsA patients. TNF-a, IL-1a, IL-1b, IL-15, IL-10, and the active subunit of NF-kb (p65) were localized to the lining layer and perivascular macrophages. TNF-a, IL-1a, and IL-15 expression was reduced in PsA compared with RA lining possibly related to reduced macrophage infiltration.

    Article  PubMed  CAS  Google Scholar 

  33. Ahangari G, Halapi E, Tehrani MJ, et al.: RT-PCR topography of chronic psoriasis skin based on analysis of T-cell receptor B variable region gene usage. Scand J Immunol 1997, 45:534–540.

    Article  PubMed  CAS  Google Scholar 

  34. Moss P, Charmley P, Mulvihill E, et al.: The repertoire of T cell antigen receptor beta-chain variable regions associated with psoriasis vulgaris. J Invest Dermatol 1997, 109:14–19.

    Article  PubMed  CAS  Google Scholar 

  35. Davison S, Allen M, Harmer A, et al.: Increased T-cell receptor vbeta(su2) chain expression in skin homing lymphocytes in psoriasis. Br J Dermatol 1999, 140:845–848.

    Article  PubMed  CAS  Google Scholar 

  36. Chang JC, Smith LR, Froning KJ, et al.: CD8+ T cells in psoriatic lesions preferentially use T-cell receptor V beta 3 and/or V beta 13.1 genes. Proc Natl Acad Sci USA 1994, 91:9282–9286.

    Article  PubMed  CAS  Google Scholar 

  37. Prinz JC, Vollmer S, Boehncke WH, et al.: Selection of conserved TCR VDJ rearrangements in chronic psoriatic plaques indicates a common antigen in psoriasis vulgaris. Eur J Immunol 1999, 29:3360–3368.

    Article  PubMed  CAS  Google Scholar 

  38. Waase I, Kayser C, Carlson PJ, et al.: Oligoclonal T cell proliferation in patients with rheumatoid arthritis and their unaffected siblings. Arthritis Rheum 1996, 39:904–913.

    Article  PubMed  CAS  Google Scholar 

  39. Tassiulas I, Duncan SR, Centola M, et al.: Clonal characteristics of T cell infiltrates in skin and synovium of patients with psoriatic arthritis. Hum Immunol 1999, 60:479–491. PsA patients have significant TCR BV bias in blood when compared with that of normal volunteers. Two patients shared identical sequences. In addition, several homologous amino acid motifs were present in skin and synovium among and between patients, which suggests that antigen-driven expansions occur in skin and synovium, possibly related to a common antigen present at both sites.

    Article  PubMed  CAS  Google Scholar 

  40. Costello PJ, Winchester RJ, Curran SA, et al.: Psoriatic arthritis joint fluids are characterized by CD8 and CD4 T cell clonal expansions that appear antigen driven. J Immunol 2001, 166:2878–2886. The authors demonstrated clonal expansions of CD8+ and CD4+ T cells in PsA synovial fluid. Sequencing demonstrated highly homologous CDR3 regions at the amino acid level that differed at the nucleotide, indicating an antigen-driven response. Seventy-five percent of all clones were unique to the fluid, the remainder being shared with blood.

    PubMed  CAS  Google Scholar 

  41. Bata-Csorgo Z, Hammerberg C, Voorhees JJ, et al.: Flow cytometric identification of proliferative subpopulations within normal human epidermis and the localization of the primary hyperproliferative population in psoriasis. J Exp Med 1993, 178:1271–1281.

    Article  PubMed  CAS  Google Scholar 

  42. McKay IA, Leigh IM: Altered keratinocyte growth and differentiation in psoriasis. Clin Dermatol 1995, 13:105–114.

    Article  PubMed  CAS  Google Scholar 

  43. Fleischmajer R, Kuroda K, Hazan R, et al.: Basement membrane alterations in psoriasis are accompanied by epidermal overexpression of MMP-2 and its inhibitor TIMP-2. J Invest Dermatol 2000, 115:771–777.

    Article  PubMed  CAS  Google Scholar 

  44. Bonish B, Jullien D, Dutronc Y, et al.: Overexpression of CD1d by keratinocytes in psoriasis and CD1d-dependent IFN-gamma production by NK-T cells. J Immunol 2000, 165:4076–4085. Authors conclude that CD1d can be expressed in a keratinocytes and is up-regulated in psoriasis and other inflammatory dermatoses. IFN-g can enhance keratinocyte CD1d expression. These CD1d+ keratinocytes can then activate NK-T cells to produce IFN-g. This interaction of keratinocytes and NK-T cells could provide a mechanism that contributes to the pathogenesis of psoriasis and other skin disorders.

    PubMed  CAS  Google Scholar 

  45. Strange P, Cooper KD, Hansen ER, et al.: T-lymphocyte clones initiated from lesional psoriatic skin release growth factors that induce keratinocyte proliferation. J Invest Dermatol 1993, 101:695–700.

    Article  PubMed  CAS  Google Scholar 

  46. Blotnick S, Peoples GE, Freeman MR, et al.: T lymphocytes synthesize and export heparin-binding epidermal growth factor-like growth factor and basic fibroblast growth factor, mitogens for vascular cells and fibroblasts: differential production and release by CD4+ and CD8+ T cells. Proc Natl Acad Sci USA 1994, 91:2890–2894.

    Article  PubMed  CAS  Google Scholar 

  47. Huang BB, Bonish BK, Chaturvedi V, et al.: Keratinocyte CDw60 Expression is Modulated by Both a Th-1 Type Cytokine IFN-gamma and Th-2 Cytokines IL-4 and IL-13: Relevance to Psoriasis. J Invest Dermatol, 2001, 116(2):305–312.

    Article  PubMed  CAS  Google Scholar 

  48. Reich K, Garbe C, Blaschke V, et al.: Response of Psoriasis to Interleukin-10 is Associated with Suppression of Cutaneous Type 1 Inflammation, Downregulation of the Epidermal Interleukin-8/CXCR2 Pathway and Normalization of Keratinocyte Maturation. J Invest Dermatol, 2001, 116(2):319–329.

    Article  PubMed  CAS  Google Scholar 

  49. Strange P, Skov L, Baadsgaard O: Interferon gamma-treated keratinocytes activate T cells in the presence of superantigens: involvement of major histocompatibility complex class II molecules. J Invest Dermatol 1994, 102:150–154.

    Article  PubMed  CAS  Google Scholar 

  50. Reece RJ, Canete JD, Parsons WJ, et al.: Distinct vascular patterns of early synovitis in psoriatic, reactive, and rheumatoid arthritis. Arthritis Rheum 1999, 42:1481–1484.

    Article  PubMed  CAS  Google Scholar 

  51. Fearon U, Groiosias K, Fraser A, et al.: Co-expression of angiopoietin and VEGF determines vascular morphology in inflammatory arthritides. Arthritis Rheum 2000, 43:S1183.

    Article  Google Scholar 

  52. Gallagher LP, Gogarty M, Murphy EP, et al.: Vascular endothelial growth factor and receptor expression in human inflammatory joint disease. Arthritis Rheum 2000, 43:S354.

    Google Scholar 

  53. Bhushan M, McLaughlin B, Weiss JB, et al.: Levels of endothelial cell stimulating angiogenesis factor and vascular endothelial growth factor are elevated in psoriasis. Br J Dermatol 1999, 141:1054–1060.

    Article  PubMed  CAS  Google Scholar 

  54. Neidhart M, Wehrli R, Bruhlmann P, et al.: Synovial fluid CD146 (MUC18), a marker for synovial membrane angiogenesis in rheumatoid arthritis. Arthritis Rheum 1999, 42:622–630.

    Article  PubMed  CAS  Google Scholar 

  55. McGonagle D, Conaghan PG, Emery P: Psoriatic arthritis: a unified concept twenty years on. Arthritis Rheum 1999, 42:1080–1086.

    Article  PubMed  CAS  Google Scholar 

  56. McGonagle D, Gibbon W, O’Connor P, et al.: Characteristic magnetic resonance imaging entheseal changes of knee synovitis in spondylarthropathy. Arthritis Rheum 1998, 41:694–700. This study describes the magnetic resonance imaging (MRI) changes associated with enthesitis. The authors propose that PsA be considered primarily an entheseal-based disease and that the synovial inflammation in PsA is secondary and nonspecific.

    Article  PubMed  CAS  Google Scholar 

  57. Costello P, Kane D, Curran S, et al.: Psoriatic arthritis—an enthesopathy-based disorder. Comment on the article by McGonagle et al. Arthritis Rheum 2000, 43:712–714.

    Article  PubMed  CAS  Google Scholar 

  58. Owen CM, Harrison PV: Successful treatment of severe psoriasis with basiliximab, an interleukin-2 receptor monoclonal antibody. Clin Exp Dermatol 2000, 25:195–197.

    Article  PubMed  CAS  Google Scholar 

  59. Gottlieb AB, Lebwohl M, Shirin S, et al.: Anti-CD4 monoclonal antibody treatment of moderate to severe psoriasis vulgaris: results of a pilot, multicenter, multiple-dose, placebo-controlled study. J Am Acad Dermatol 2000, 43:595–604.

    Article  PubMed  CAS  Google Scholar 

  60. Gottlieb A, Krueger JG, Bright R, et al.: Effects of administration of a single dose of a humanized monoclonal antibody to CD11a on the immunobiology and clinical activity of psoriasis. J Am Acad Dermatol 2000, 42:428–435.

    Article  PubMed  CAS  Google Scholar 

  61. Mease PJ, Goffe BS, Metz J, et al.: Etanercept in the treatment of psoriatic arthritis and psoriasis: a randomised trial. Lancet 2000, 356:385–390.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costello, P., FitzGerald, O. Disease Mechanisms in psoriasis and psoriatic arthritis. Curr Rheumatol Rep 3, 419–427 (2001). https://doi.org/10.1007/s11926-996-0013-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11926-996-0013-7

Keywords

Navigation