Skip to main content
Log in

Epigenetic Mechanisms and Non-coding RNAs in Osteoarthritis

  • OSTEOARTHRITIS (MB GOLDRING, SECTION EDITOR)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Osteoarthritis (OA) is a disease typified by the loss of cartilage, the normal integrity of which is maintained by the resident cell, the chondrocyte. Alterations in chondrocyte gene expression with age, injury, loading or predisposing genetics, underpin OA cartilage loss. Cell- and tissue-specific gene expression is determined by epigenetic mechanisms, including DNA methylation, chromatin modifications and non-coding RNAs, including microRNAs and long-non-coding RNAs. A number of epigenetic changes have been identified between OA and normal cartilage, and the enzymes which impart the epigenetic code are increasingly seen as important players in a number of pathologies, including OA. Here, we will describe current and potential new epigenetic studies that are likely to reveal novel aspects of chondrocyte and cartilage biology and potentially help sub-characterise OA phenotypes. Importantly, many of these epigenetic modifiers or non-coding RNAs are proposed drug targets and could represent a therapeutic opportunity for this currently untreatable disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Arden N, Nevitt MC. Osteoarthritis: Epidemiology. Best Pract Res Clin Rheumatol. 2006;20(1):3–25.

    Article  PubMed  Google Scholar 

  2. Loeser R. Molecular mechanisms of cartilage destruction in osteoarthritis. Biochem J. 2008;8(4):303–6.

    CAS  Google Scholar 

  3. Rowan AD, Litherland GJ, Hui W, Milner JM. Metalloproteases as potential therapeutic targets in arthritis treatment. Expert Opin Ther Targets. 2008;12(1):1–18.

    Article  PubMed  CAS  Google Scholar 

  4. Jones PA. Functions of DNA methylation: Islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13(7):484–92.

    Article  PubMed  CAS  Google Scholar 

  5. Blackledge NP, Klose R. CpG island chromatin: A platform for gene regulation. Epigenetics. 2011;6(2):147–52.

    Article  PubMed  CAS  Google Scholar 

  6. •• Consortium EP, Dunham I, Kundaje A. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489(7414):57–74. This is a landmark paper which defines the transcriptional landscape of the human genome.

    Article  Google Scholar 

  7. Deaton AM, Bird A. CpG islands and the regulation of transcription. Genes Dev. 2011;25(10):1010–22.

    Article  PubMed  CAS  Google Scholar 

  8. Cedar H, Bergman Y. Programming of DNA methylation patterns. Annu Rev Biochem. 2012;81:97–117.

    Article  PubMed  CAS  Google Scholar 

  9. Sesselmann S, Soder S, Voigt R, et al. DNA methylation is not responsible for p21WAF1/CIP1 down-regulation in osteoarthritic chondrocytes. Osteoarthr Cartil. 2009;17(4):507–12.

    Article  PubMed  CAS  Google Scholar 

  10. Barter MJ, Bui C, Young DA. Epigenetic mechanisms in cartilage and osteoarthritis: DNA methylation, histone modifications and microRNAs. Osteoarthr Cartil. 2012;20(5):339–49.

    Article  PubMed  CAS  Google Scholar 

  11. Poschl E, Fidler A, Schmidt B, et al. DNA methylation is not likely to be responsible for aggrecan down regulation in aged or osteoarthritic cartilage. Ann Rheum Dis. 2005;64(3):477–80.

    Article  PubMed  CAS  Google Scholar 

  12. Zimmermann P, Boeuf S, Dickhut A, et al. Correlation of COL10A1 induction during chondrogenesis of mesenchymal stem cells with demethylation of two CpG sites in the COL10A1 promoter. Arthritis Rheum. 2008;58(9):2743–53.

    Article  PubMed  Google Scholar 

  13. Kim, KI, YS Park, GI Im. Changes in the epigenetic status of the SOX-9 promoter in human osteoarthritic cartilage. J Bone Miner Res, 2012

  14. Roach HI, Yamada N, Cheung KS, et al. Association between the abnormal expression of matrix-degrading enzymes by human osteoarthritic chondrocytes and demethylation of specific CpG sites in the promoter regions. Arthritis Rheum. 2005;52(10):3110–24.

    Article  PubMed  CAS  Google Scholar 

  15. • Bui C, Barter MJ, Scott JL, et al. cAMP response element-binding (CREB) recruitment following a specific CpG demethylation leads to the elevated expression of the matrix metalloproteinase 13 in human articular chondrocytes and osteoarthritis. FASEB J. 2012;26(7):3000–11. This paper is the first to detail how a CpG change in osteoarthritis can impact on expression of the important collagenase MMP13.

    Article  PubMed  CAS  Google Scholar 

  16. Hashimoto K, Otero M, Imagawa K, et al. Regulated transcription of human matrix metalloproteinase 13 (MMP13) and interleukin-1beta (IL1B) genes in chondrocytes depends on methylation of specific proximal promoter CpG sites. J Biol Chem. 2013;288(14):10061–72.

    Article  PubMed  CAS  Google Scholar 

  17. de Andres, MC, K Imagawa, K Hashimoto, et al. Loss of methylation in CpG sites in the NF-kappaB enhancer elements of iNOS is responsible for gene induction in human articular chondrocytes. Arthritis Rheum, 2012.

  18. Hashimoto K, Oreffo RO, Gibson MB, et al. DNA demethylation at specific CpG sites in the IL1B promoter in response to inflammatory cytokines in human articular chondrocytes. Arthritis Rheum. 2009;60(11):3303–13.

    Article  PubMed  CAS  Google Scholar 

  19. Iliopoulos D, Malizos KN, Tsezou A. Epigenetic regulation of leptin affects MMP-13 expression in osteoarthritic chondrocytes: possible molecular target for osteoarthritis therapeutic intervention. Ann Rheum Dis. 2007;66(12):1616–21.

    Article  PubMed  CAS  Google Scholar 

  20. Delgado-Calle J, Fernandez AF, Sainz J, et al. Genome-wide profiling of bone reveals differentially methylated regions in osteoporosis and osteoarthritis. Arthritis Rheum. 2013;65(1):197–205.

    Article  PubMed  CAS  Google Scholar 

  21. • Reynard LN, Bui C, Canty-Laird EG, et al. Expression of the osteoarthritis-associated gene GDF5 is modulated epigenetically by DNA methylation. Hum Mol Genet. 2011;20(17):3450–60. The paper links DNA methylation to differential allelic expression of an important OA-associated gene.

    Article  PubMed  CAS  Google Scholar 

  22. Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21(3):381–95.

    Article  PubMed  CAS  Google Scholar 

  23. Clayton AL, Hazzalin CA, Mahadevan LC. Enhanced histone acetylation and transcription: A dynamic perspective. Mol Cell. 2006;23(3):289–96.

    Article  PubMed  CAS  Google Scholar 

  24. Dawson MA, Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell. 2012;150(1):12–27.

    Article  PubMed  CAS  Google Scholar 

  25. Gregoretti IV, Lee YM, Goodson HV. Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol. 2004;338(1):17–31.

    Article  PubMed  CAS  Google Scholar 

  26. Inoue T, Hiratsuka M, Osaki M, Oshimura M. The molecular biology of mammalian SIRT proteins: SIRT2 in cell cycle regulation. Cell Cycle. 2007;6(9):1011–8.

    Article  PubMed  CAS  Google Scholar 

  27. Lee JS, Smith E, Shilatifard A. The language of histone crosstalk. Cell. 2010;142(5):682–5.

    Article  PubMed  CAS  Google Scholar 

  28. Tan M, Luo H, Lee S, et al. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell. 2011;146(6):1016–28.

    Article  PubMed  CAS  Google Scholar 

  29. Huber LC, Brock M, Hemmatazad H, et al. Histone deacetylase/acetylase activity in total synovial tissue derived from rheumatoid arthritis and osteoarthritis patients. Arthritis Rheum. 2007;56(4):1087–93.

    Article  PubMed  CAS  Google Scholar 

  30. Higashiyama R, Miyaki S, Yamashita S, et al. Correlation between MMP-13 and HDAC7 expression in human knee osteoarthritis. Mod Rheumatol. 2010;20(1):11–7.

    Article  PubMed  CAS  Google Scholar 

  31. Hong S, Derfoul A, Pereira-Mouries L, Hall DJ. A novel domain in histone deacetylase 1 and 2 mediates repression of cartilage-specific genes in human chondrocytes. FASEB J. 2009;23(10):3539–52.

    Article  PubMed  CAS  Google Scholar 

  32. Chen WP, Bao JP, Hu PF, et al. Alleviation of osteoarthritis by trichostatin a, a histone deacetylase inhibitor, in experimental osteoarthritis. Mol Biol Rep. 2010;37(8):3967–72.

    Article  PubMed  CAS  Google Scholar 

  33. Chung YL, Lee MY, Wang AJ, Yao LF. A therapeutic strategy uses histone deacetylase inhibitors to modulate the expression of genes involved in the pathogenesis of rheumatoid arthritis. Mol Ther. 2003;8(5):707–17.

    Article  PubMed  CAS  Google Scholar 

  34. Lin HS, Hu CY, Chan HY, et al. Anti-rheumatic activities of histone deacetylase (HDAC) inhibitors in vivo in collagen-induced arthritis in rodents. Br J Pharmacol. 2007;150(7):862–72.

    Article  PubMed  CAS  Google Scholar 

  35. Nishida K, Komiyama T, Miyazawa S, et al. Histone deacetylase inhibitor suppression of autoantibody-mediated arthritis in mice via regulation of p16INK4a and p21(WAF1/Cip1) expression. Arthritis Rheum. 2004;50(10):3365–76.

    Article  PubMed  CAS  Google Scholar 

  36. Chabane N, Zayed N, Afif H, et al. Histone deacetylase inhibitors suppress interleukin-1beta-induced nitric oxide and prostaglandin E2 production in human chondrocytes. Osteoarthr Cartil. 2008;16(10):1267–74.

    Article  PubMed  CAS  Google Scholar 

  37. Young DA, Lakey RL, Pennington CJ, et al. Histone deacetylase inhibitors modulate metalloproteinase gene expression in chondrocytes and block cartilage resorption. Arthritis Res Ther. 2005;7(3):R503–12.

    Article  PubMed  CAS  Google Scholar 

  38. Wang X, Song Y, Jacobi JL, Tuan RS. Inhibition of histone deacetylases antagonized FGF2 and IL-1beta effects on MMP expression in human articular chondrocytes. Growth Factors. 2009;27(1):40–9.

    Article  PubMed  Google Scholar 

  39. Furumatsu T, Tsuda M, Yoshida K, et al. Sox9 and p300 cooperatively regulate chromatin-mediated transcription. J Biol Chem. 2005;280(42):35203–8.

    Article  PubMed  CAS  Google Scholar 

  40. Huh YH, Ryu JH, Chun JS. Regulation of type II collagen expression by histone deacetylase in articular chondrocytes. J Biol Chem. 2007;282(23):17123–31.

    Article  PubMed  CAS  Google Scholar 

  41. Zayed N, El Mansouri FE, Chabane N, et al. Valproic acid suppresses interleukin-1ss-induced microsomal prostaglandin E2 synthase-1 expression in chondrocytes through upregulation of NAB1. J Rheumatol. 2011;38(3):492–502.

    Article  PubMed  CAS  Google Scholar 

  42. Saito T, Nishida K, Furumatsu T, et al. Histone deacetylase inhibitors suppress mechanical stress-induced expression of RUNX-2 and ADAMTS-5 through the inhibition of the MAPK signaling pathway in cultured human chondrocytes. Osteoarthr Cartil. 2013;21(1):165–74.

    Article  PubMed  CAS  Google Scholar 

  43. Gagarina V, Gabay O, Dvir-Ginzberg M, et al. SirT1 enhances survival of human osteoarthritic chondrocytes by repressing protein tyrosine phosphatase 1B and activating the insulin-like growth factor receptor pathway. Arthritis Rheum. 2010;62(5):1383–92.

    Article  PubMed  CAS  Google Scholar 

  44. Hong EH, Lee SJ, Kim JS, et al. Ionizing radiation induces cellular senescence of articular chondrocytes via negative regulation of SIRT1 by p38 kinase. J Biol Chem. 2010;285(2):1283–95.

    Article  PubMed  CAS  Google Scholar 

  45. Takayama K, Ishida K, Matsushita T, et al. SIRT1 regulation of apoptosis of human chondrocytes. Arthritis Rheum. 2009;60(9):2731–40.

    Article  PubMed  CAS  Google Scholar 

  46. Dvir-Ginzberg M, Gagarina V, Lee EJ, Hall DJ. Regulation of cartilage-specific gene expression in human chondrocytes by SirT1 and nicotinamide phosphoribosyltransferase. J Biol Chem. 2008;283(52):36300–10.

    Article  PubMed  CAS  Google Scholar 

  47. Fujita N, Matsushita T, Ishida K, et al. Potential involvement of SIRT1 in the pathogenesis of osteoarthritis through the modulation of chondrocyte gene expressions. J Orthop Res. 2011;29(4):511–5.

    Article  PubMed  CAS  Google Scholar 

  48. • Gabay O, Oppenhiemer H, Meir H, et al. Increased apoptotic chondrocytes in articular cartilage from adult heterozygous SirT1 mice. Ann Rheum Dis. 2012;71(4):613–6. SirT1 has been linked to chondrocyte function; here, the authors confirm a role of SirT1 in regulating chondrocyte apoptosis in vivo.

    Article  PubMed  CAS  Google Scholar 

  49. Lei M, Wang JG, Xiao DM, et al. Resveratrol inhibits interleukin 1beta-mediated inducible nitric oxide synthase expression in articular chondrocytes by activating SIRT1 and thereby suppressing nuclear factor-kappaB activity. Eur J Pharmacol. 2012;674(2–3):73–9.

    Article  PubMed  CAS  Google Scholar 

  50. Matsushita, T, H Sasaki, K Takayama, et al. The overexpression of SIRT1 inhibited osteoarthritic gene expression changes induced by interleukin-1beta in human chondrocytes. J Orthop Res, 2012.

  51. Moon, MH, JK Jeong, YJ Lee, et al. SIRT1, a class III histone deacetylase, regulates TNF-alpha-induced inflammation in human chondrocytes. Osteoarthritis Cartilage, 2012.

  52. El Mansouri FE, Chabane N, Zayed N, et al. Contribution of H3K4 methylation by SET-1A to interleukin-1-induced cyclooxygenase 2 and inducible nitric oxide synthase expression in human osteoarthritis chondrocytes. Arthritis Rheum. 2011;63(1):168–79.

    Article  PubMed  Google Scholar 

  53. • Castano Betancourt MC, Cailotto F, Kerkhof HJ, et al. Genome-wide association and functional studies identify the DOT1L gene to be involved in cartilage thickness and hip osteoarthritis. Proc Natl Acad Sci U S A. 2012;109(21):8218–23. This study is the first to provide a direct link between an histone methyltransferase and hip osteoarthritis.

    Article  PubMed  Google Scholar 

  54. Harries LW. Long non-coding RNAs and human disease. Biochem Soc Trans. 2012;40(4):902–6.

    Article  PubMed  CAS  Google Scholar 

  55. Djebali S, Davis CA, Merkel A, et al. Landscape of transcription in human cells. Nature. 2012;489(7414):101–8.

    Article  PubMed  CAS  Google Scholar 

  56. • Derrien T, Johnson R, Bussotti G, et al. The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression. Genome Res. 2012;22(9):1775–89. This paper, which is part of ENCODE, defines and catalogues long non-coding RNAs in humans.

    Article  PubMed  CAS  Google Scholar 

  57. Huntzinger E, Izaurralde E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet. 2011;12(2):99–110.

    Article  PubMed  CAS  Google Scholar 

  58. Czech B, Hannon GJ. Small RNA sorting: Matchmaking for argonautes. Nat Rev Genet. 2010;12(1):19–31.

    Article  PubMed  Google Scholar 

  59. Grimson A, Farh KK, Johnston WK, et al. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell. 2007;27(1):91–105.

    Article  PubMed  CAS  Google Scholar 

  60. Chi SW, GJ Hannon RB. Darnell, An alternative mode of microRNA target recognition. Nat Struct Mol Biol. 2012;19(3):321–7.

    Article  PubMed  CAS  Google Scholar 

  61. Neilsen CT, Goodall GJ, Bracken CP. IsomiRs—the overlooked repertoire in the dynamic microRNAome. Trends Genet. 2012;28(11):544–9.

    Article  PubMed  CAS  Google Scholar 

  62. Sayed D, Abdellatif M. MicroRNAs in development and disease. Physiol Rev. 2011;91(3):827–87.

    Article  PubMed  CAS  Google Scholar 

  63. Salmena L, Poliseno L, Tay Y, et al. A ceRNA hypothesis: The rosetta stone of a hidden RNA language? Cell. 2011;146(3):353–8.

    Article  PubMed  CAS  Google Scholar 

  64. Pasquinelli AE. MicroRNAs and their targets: Recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet. 2012;13(4):271–82.

    PubMed  CAS  Google Scholar 

  65. Mendell JT, Olson EN. MicroRNAs in stress signaling and human disease. Cell. 2012;148(6):1172–87.

    Article  PubMed  CAS  Google Scholar 

  66. Guil S, Esteller M. Cis-acting noncoding RNAs: Friends and foes. Nat Struct Mol Biol. 2012;19(11):1068–75.

    Article  PubMed  CAS  Google Scholar 

  67. Rinn JL, Chang HY. Genome regulation by long noncoding RNAs. Annu Rev Biochem. 2012;81:145–66.

    Article  PubMed  CAS  Google Scholar 

  68. Dudek KA, Lafont JE, Martinez-Sanchez A, Murphy CL. Type II collagen expression is regulated by tissue-specific miR-675 in human articular chondrocytes. J Biol Chem. 2010;285(32):24381–7.

    Article  PubMed  CAS  Google Scholar 

  69. Jones SW, Watkins G, Le Good N, et al. The identification of differentially expressed microRNA in osteoarthritic tissue that modulate the production of TNF-alpha and MMP13. Osteoarthr Cartil. 2009;17(4):464–72.

    Article  PubMed  CAS  Google Scholar 

  70. Iliopoulos D, Malizos KN, Oikonomou P, Tsezou A. Integrative microRNA and proteomic approaches identify novel osteoarthritis genes and their collaborative metabolic and inflammatory networks. PLoS One. 2008;3(11):e3740.

    Article  PubMed  Google Scholar 

  71. Diaz-Prado S, Cicione C, Muinos-Lopez E, et al. Characterization of microRNA expression profiles in normal and osteoarthritic human chondrocytes. BMC Musculoskelet Disord. 2012;13:144.

    Article  PubMed  CAS  Google Scholar 

  72. Nakasa T, Miyaki S, Okubo A, et al. Expression of microRNA-146 in rheumatoid arthritis synovial tissue. Arthritis Rheum. 2008;58(5):1284–92.

    Article  PubMed  CAS  Google Scholar 

  73. Wang Y, Jiang XL, Yang SC, et al. MicroRNAs in the regulation of interfacial behaviors of MSCs cultured on microgrooved surface pattern. Biomaterials. 2011;32(35):9207–17.

    Article  PubMed  CAS  Google Scholar 

  74. Li J, Huang J, Dai L, et al. miR-146a, an IL-1beta responsive miRNA, induces vascular endothelial growth factor and chondrocyte apoptosis by targeting Smad4. Arthritis Res Ther. 2012;14(2):R75.

    Article  PubMed  CAS  Google Scholar 

  75. Lin, L, Q Shen, C Zhang, et al. Assessment of the profiling MicroRNA expression of differentiated and dedifferentiated human adult articular chondrocytes. J Orthop Res, 2011.

  76. Murata K, Yoshitomi H, Tanida S, et al. Plasma and synovial fluid microRNAs as potential biomarkers of rheumatoid arthritis and osteoarthritis. Arthritis Res Ther. 2010;12(3):R86.

    Article  PubMed  Google Scholar 

  77. Yamasaki K, Nakasa T, Miyaki S, et al. Expression of MicroRNA-146a in osteoarthritis cartilage. Arthritis Rheum. 2009;60(4):1035–41.

    Article  PubMed  CAS  Google Scholar 

  78. Okuhara, A, T Nakasa, H Shibuya, et al. Changes in microRNA expression in peripheral mononuclear cells according to the progression of osteoarthritis. Mod Rheumatol, 2011.

  79. Miyaki S, Nakasa T, Otsuki S, et al. MicroRNA-140 is expressed in differentiated human articular chondrocytes and modulates interleukin-1 responses. Arthritis Rheum. 2009;60(9):2723–30.

    Article  PubMed  CAS  Google Scholar 

  80. •• Miyaki S, Sato T, Inoue A, et al. MicroRNA-140 plays dual roles in both cartilage development and homeostasis. Genes Dev. 2010;24(11):1173–85. The first paper to show that a single miR, miR-140, could regulate skeletal development and OA onset.

    Article  PubMed  CAS  Google Scholar 

  81. Nakamura Y, Inloes JB, Katagiri T, Kobayashi T. Chondrocyte-specific microRNA-140 regulates endochondral bone development and targets Dnpep to modulate bone morphogenetic protein signaling. Mol Cell Biol. 2011;31(14):3019–28.

    Article  PubMed  CAS  Google Scholar 

  82. Tuddenham L, Wheeler G, Ntounia-Fousara S, et al. The cartilage specific microRNA-140 targets histone deacetylase 4 in mouse cells. FEBS Lett. 2006;580(17):4214–7.

    Article  PubMed  CAS  Google Scholar 

  83. Wienholds E, Kloosterman WP, Miska E, et al. MicroRNA expression in zebrafish embryonic development. Science. 2005;309(5732):310–1.

    Article  PubMed  CAS  Google Scholar 

  84. Swingler, TE, G Wheeler, V Carmont, et al. The expression and function of microRNAs in chondrogenesis and osteoarthritis. Arthritis Rheum, 2011.

  85. Buechli, ME, J Lamarre, TG Koch. MicroRNA-140 expression during chondrogenic differentiation of equine cord blood-derived mesenchymal stromal cells. Stem Cells Dev, 2012

  86. Yamashita S, Miyaki S, Kato Y, et al. L-Sox5 and Sox6 proteins enhance chondrogenic miR-140 microRNA expression by strengthening dimeric Sox9 activity. J Biol Chem. 2012;287(26):22206–15.

    Article  PubMed  CAS  Google Scholar 

  87. Nakamura Y, He X, Kato H, et al. Sox9 is upstream of microRNA-140 in cartilage. Appl Biochem Biotechnol. 2011;166(1):64–71.

    Article  PubMed  Google Scholar 

  88. Yang J, Qin S, Yi C, et al. MiR-140 is co-expressed with Wwp2-C transcript and activated by Sox9 to target Sp1 in maintaining the chondrocyte proliferation. FEBS Lett. 2011;585(19):2992–7.

    Article  PubMed  CAS  Google Scholar 

  89. He X, Yan YL, Delaurier A, Postlethwait JH. Observation of miRNA Gene Expression in Zebrafish Embryos by In Situ Hybridization to MicroRNA Primary Transcripts. Zebrafish. 2011;8(1):1–8.

    Article  PubMed  CAS  Google Scholar 

  90. Pando R, Even-Zohar N, Shtaif B, et al. MicroRNAs in the growth plate are responsive to nutritional cues: association between miR-140 and SIRT1. J Nutr Biochem. 2012;23(11):1474–81.

    Article  PubMed  CAS  Google Scholar 

  91. van der Kraan PM, Goumans MJ, Blaney Davidson E, ten Dijke P. Age-dependent alteration of TGF-beta signalling in osteoarthritis. Cell Tissue Res. 2012;347(1):257–65.

    Article  PubMed  Google Scholar 

  92. Li N, Cui J, Duan X, et al. Suppression of type I collagen expression by miR-29b via PI3K, Akt, and Sp1 pathway in human Tenon's fibroblasts. Invest Ophthalmol Vis Sci. 2012;53(3):1670–8.

    Article  PubMed  CAS  Google Scholar 

  93. Li Z, Hassan MQ, Jafferji M, et al. Biological functions of miR-29b contribute to positive regulation of osteoblast differentiation. J Biol Chem. 2009;284(23):15676–84.

    Article  PubMed  CAS  Google Scholar 

  94. Yan C, Wang Y, Shen XY, et al. MicroRNA regulation associated chondrogenesis of mouse MSCs grown on polyhydroxyalkanoates. Biomaterials. 2011;32(27):6435–44.

    Article  PubMed  CAS  Google Scholar 

  95. Steck E, Boeuf S, Gabler J, et al. Regulation of H19 and its encoded microRNA-675 in osteoarthritis and under anabolic and catabolic in vitro conditions. J Mol Med (Berl). 2012;90(10):1185–95.

    Article  CAS  Google Scholar 

  96. Dai L, Zhang X, Hu X, et al. Silencing of microRNA-101 prevents IL-1beta-induced extracellular matrix degradation in chondrocytes. Arthritis Res Ther. 2012;14(6):R268.

    Article  PubMed  CAS  Google Scholar 

  97. Xu J, Kang Y, Liao WM, Yu L. MiR-194 regulates chondrogenic differentiation of human adipose-derived stem cells by targeting Sox5. PLoS One. 2012;7(3):e31861.

    Article  PubMed  CAS  Google Scholar 

  98. Song, J, M Lee, D Kim, et al. MicroRNA-181b regulates articular chondrocytes differentiation and cartilage integrity. Biochem Biophys Res Commun, 2013.

  99. Abouheif MM, Nakasa T, Shibuya H, et al. Silencing microRNA-34a inhibits chondrocyte apoptosis in a rat osteoarthritis model in vitro. Rheumatology (Oxford). 2010;49(11):2054–60.

    Article  CAS  Google Scholar 

  100. Kim, D, J Song, S Kim, et al. MicroRNA-34a modulates cytoskeletal dynamics through regulating RhoA/Rac1 crosstalk in chondroblasts. J Biol Chem, 2012.

  101. Akhtar, N, Haqqi TM. MicroRNA-199a* regulates the expression of cyclooxygenase-2 in human chondrocytes. Ann Rheum Dis, 2012.

  102. Akhtar N, Rasheed Z, Ramamurthy S, et al. MicroRNA-27b regulates the expression of matrix metalloproteinase 13 in human osteoarthritis chondrocytes. Arthritis Rheum. 2010;62(5):1361–71.

    Article  PubMed  CAS  Google Scholar 

  103. Zhang L, Yang M, Marks P, et al. Serum non-coding RNAs as biomarkers for osteoarthritis progression after ACL injury. Osteoarthr Cartil. 2012;20(12):1631–7.

    Article  PubMed  CAS  Google Scholar 

  104. •• Maass PG, Rump A, Schulz H, et al. A misplaced lncRNA causes brachydactyly in humans. J Clin Invest. 2012;122(11):3990–4002. The first paper to demonstrate that a lncRNA could be important for skeletal development.

    Article  PubMed  CAS  Google Scholar 

  105. Xu Y, Barter MJ, Swan DC, et al. Comparison of osteoarthritis and normal hip cartilage transcriptomes using RNA-seq reveals new candidate gene targets and associated pathways. Osteoarthr Cartil. 2012;20(1):S43.

    Article  Google Scholar 

  106. • Arroyo JD, Chevillet JR, Kroh EM, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A. 2011;108(12):5003–8. A paper which redefines how miR circulate in the bloodstream.

    Article  PubMed  CAS  Google Scholar 

  107. Vickers KC, Palmisano BT, Shoucri BM, et al. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol. 2011;13(4):423–33.

    Article  PubMed  CAS  Google Scholar 

  108. • de Groote ML, Verschure PJ, Rots MG. Epigenetic editing: Targeted rewriting of epigenetic marks to modulate expression of selected target genes. Nucleic Acids Res. 2012;40(21):10596–613. Identification of genes and epigenetic marks involved in osteoarthritis is important and this paper describes mechanisms in which those marks can be modulated to control gene expression.

    Article  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Matt J. Barter declares that he has no conflict of interest.

David A. Young declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matt J. Barter.

Additional information

This article is part of the Topical Collection on Osteoarthritis

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barter, M.J., Young, D.A. Epigenetic Mechanisms and Non-coding RNAs in Osteoarthritis. Curr Rheumatol Rep 15, 353 (2013). https://doi.org/10.1007/s11926-013-0353-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11926-013-0353-z

Keywords

Navigation