Skip to main content
Log in

The role of G proteins in the psychobiology and treatment of affective disorders and their integration with the neurotransmitter hypothesis

  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

Heterotrimeric G proteins are a crucial point of convergence in the transmission of signals from a variety of primary messengers and their membrane receptors to downstream intracellular second messenger effector enzymes and ionic channels. Thus, these proteins have raised increasing interest in the clinical perspective of altered G protein function. This article addresses the most recent significant findings regarding the role of G proteins in the pathophysiology of mood disorders and in the molecular mechanisms underlying the treatment of these disorders, with emphasis on biochemical and genetic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Schatzberg AF, Schildkraut JJ: Recent studies on norepinephrine systems in mood disorders In Psychoparmacology the Fourth Generation of Progress. Edited by Bloom FE, Kupfer DJ. New York: Raven Press; 1995:911–920.

    Google Scholar 

  2. Maes M, Meltzer HY: The serotonin hypothesis of major depression. In Psychoparmacology the Fourth Generation of Progress. Edited by Bloom FE, Kupfer DJ. New York: Raven Press; 1995:933–944.

    Google Scholar 

  3. Janowsky DS, Overstreet DH: The role of acetylcholine mechanisms in mood disorders. In Psychoparmacology the Fourth Generation of Progress. Edited by Bloom FE, Kupfer DJ. New York: Raven Press; 1995:945–956.

    Google Scholar 

  4. Gilman AG: G proteins. Transducers of receptor-generated signals. Annu Rev Biochem 1987, 56:615–649.

    Article  PubMed  CAS  Google Scholar 

  5. Freissmuth M, Gilman AG: G protein and the regulation of second messenger systems. In Harrison’s Principles of Internal Medicine. Edited by Isselbacher KJ, Braunwald E, Wilson JD et al. Yew York: McGraw-Hill; 1994:426–431.

    Google Scholar 

  6. Avissar S, Schreiber G, Danon A et al.: Lithium inhibits adrenergic and cholinergic increases in GTP binding in rat cortex. Nature 1988, 331:440–442.

    Article  PubMed  CAS  Google Scholar 

  7. Avissar S, Schreiber G: Muscarinic receptor subclassification and G proteins: Significance for lithium action in affective disorders and for the treatment of the extrapyramidal side effects of neuroleptics. (Bennett Award Paper) Biol Psychiatry 1989, 26:113–130.

    Article  PubMed  CAS  Google Scholar 

  8. Schreiber G, Avissar S, Aulakh CS et al.: Lithium-selective alteration of brain vs. cardiac Gs protein function. Neuropharmacology 1990, 29:1067–1071.

    Article  PubMed  CAS  Google Scholar 

  9. Avissar S, Schreiber G: The involvement of G proteins in the pathogenesis and treatment of affective disorders. (Ziskind-Somerfeld Award Paper) Biol Psychiatry 1992, 31:435–459.

    Article  PubMed  CAS  Google Scholar 

  10. Avissar S, Schreiber G: Interaction of antibipolar and antidepressant treatments with receptor-coupled G proteins. (Anna Monika Award Paper) Pharmacopsychiatry 1992, 25:44–50.

    PubMed  CAS  Google Scholar 

  11. Avissar S, Murphy DL, Schreiber G: Magnesium reverses lithium inhibition of beta adrenergic and muscarinic receptor coupling to G proteins. Biochem Pharmacol 1991, 41:171–175.

    Article  PubMed  CAS  Google Scholar 

  12. Meyniel G, Doly M, Gallard G: Electrophysiological demonstration of transducin inhibition by lithium. C R Acad Sci Paris 1989, 309:289–294.

    PubMed  CAS  Google Scholar 

  13. Mork A, Geisler A: Effects of GTP on hormone-stimulated adenylate cyclase activity in cerebral cortex, striatum and hippocampus from rats treated chronically with lithium. Biol Psychiatry 1989, 26:279–288.

    Article  PubMed  CAS  Google Scholar 

  14. Newman ME, Shapira B, Lerer B: Effects of lithium and desipramine on second messenger responses in rat hippocampus: relation to G protein effects. Neuropharmacology 1991, 30:1297–13101.

    Article  PubMed  CAS  Google Scholar 

  15. Manji HK, Bitran J, Masana M, et al.: Signal transduction modulation by lithium: cell culture, cerebral microdialysis and human studies. Psychopharmacol Bull 1991, 27:199–208.

    PubMed  CAS  Google Scholar 

  16. Song L, Jope RS: Chronic lithium treatment impairs phosphatidylinositol hydrolysis in membranes from rat brain regions. J Neurochem 1992, 58:2200–2206.

    Article  PubMed  CAS  Google Scholar 

  17. Lesch KP, Aulakh CS, Tolliver TJ, et al.: Differential effects of long-term lithium and carbamazepine administration on Gsa and Gia protein in rat brain. Eur J Pharmacol (Mol Pharmacol) 1991, 207:355–359.

    Article  CAS  Google Scholar 

  18. Li PP, Tam YK, Young LT, et al.: Lithium decreases Gs, Gi-1, Gi-2 a subunit mRNA levels in rat cortex. Eur J Pharmacol (Mol Pharmacol) 1991, 206:165–166.

    Article  CAS  Google Scholar 

  19. Coline SF, Chang HC, Mollner S, et al.: Chronic lithium regulates the expression of adenylate cyclase and Gi protein a subunit in rat cerebral cortex. Proc Natl Acad Sci USA 1991, 88:10634–10637.

    Article  Google Scholar 

  20. Li PP, Young LT, Tam YK et al.: Effects of chronic lithium and carbamazepine treatment on G-protein subunit expression in rat cerebral cortex. Biol Psychiatry 1993, 34:162–170.

    Article  PubMed  CAS  Google Scholar 

  21. McGowan S, Eastwood SL, Mead A et al.: Hippocampal and cortical G protein (Gs alpha, Go alpha and Gi2 alpha) mRNA expression after electroconvulsive shock or lithium carbonate treatment. Eur J Pharmacol 1996, 306:249–255.

    Article  PubMed  CAS  Google Scholar 

  22. Jakobsen SN, Wiborg O: Selective effects of long-term lithium and carbamazepine administration on G-protein subunit expression in rat brain. Brain Res 1988, 780:46–55.

    Article  Google Scholar 

  23. Wang HY, Friedman E: Effects of lithium on receptor-mediated activation of G proteins in rat brain cortical membranes. Neuropharmacol 1999, 38:403–414. This paper describes a selective effect of chronic lithium on 5HTstimulated GTP binding and toxin-mediated ADP ribosylation in brain cortical membranes by interfering with G protein-receptor coupling via a Mg2+ sensitive mechanism.

    Article  CAS  Google Scholar 

  24. Avissar S, Schreiber G, Aulakh CS, et al.: Carbamazepine and electroconvulsive shock attenuate beta-adrenoceptor and muscarinic cholinoceptor coupling to G proteins in rat cortex. Eur J Pharmacol (Mol Pharmacol) 1990, 100:99–103.

    Article  Google Scholar 

  25. Schreiber G. and Avissar S: Lithium sensitive G protein hyperfunction: A dynamic model for the pathogenesis of bipolar affective disorder. Medical Hypotheses 1991, 35:237–243.

    Article  PubMed  CAS  Google Scholar 

  26. Schreiber G, Avissar S, Danon A, et al.: Hyperfunctional G proteins in mononuclear leukocytes of patients with mania. Biol Psychiatry 1991, 29:273–280.

    Article  PubMed  CAS  Google Scholar 

  27. Avissar S, Nechamkin Y, Barki-Harrington L, et al.: Differential G protein measures in mononuclear leukocytes of patients with bipolar mood disorder are state dependent. J Affect Disord 1997, 43:85–93.

    Article  PubMed  CAS  Google Scholar 

  28. Mitchell PB, Manji HK, Chen G et al.: High levels of Gs alpha in platelets of euthymic patients with bipolar affective disorder. Am J Psychiatry 1997, 154:218–223.

    PubMed  CAS  Google Scholar 

  29. Friedman E, Wang HY: Receptor-mediated activation of G proteins is increased in postmortem brains of bipolar affective disorder subjects. J Neurochem 1996, 67:1145–1152.

    Article  PubMed  CAS  Google Scholar 

  30. Young LT, Li PP, Kish SJ, et al.: Post mortem cerebral cortex Gsa subunit levels are elevated in bipolar affective disorder. Brain Res 1991, 553:323–326.

    Article  PubMed  CAS  Google Scholar 

  31. Young LT, Li PP, Kish SJ, et al.: Cerebral cortex Gs protein levels and forskolin-stimulated cyclic AMP formation are increased in bipolar affective disorder. J Neurochem 1993, 61:890–898.

    Article  PubMed  CAS  Google Scholar 

  32. Mathews R, Li PP, Young LT et al.: Increased G alpha q/11 immunoreactivity in postmortem occipital cortex from patients with bipolar affective disorder. Biol Psychiatry 1997, 41:649–656.

    Article  PubMed  CAS  Google Scholar 

  33. Spleiss O, van Calker D, Scharer L et al.: Abnormal G protein alpha (s)- and alpha (i2)- subunit mRNA expression in bipolar affective disorder. Mol Psychiatry 1998, 3:512–520. The findings of this paper strongly support the notion of major disturbances of the cAMP signaling system in bipolar but not in unipolar disorder. It describes a selective increase in Gsa mRNA levels both in lithium-treated and in unmedicated bipolar patients and a lack of Gi2a mRNA upregulation in these patients that is reinstated by lithium treatment.

    Article  PubMed  CAS  Google Scholar 

  34. Young LT, Asghari V, Li PP et al.: Stimulatory G-protein alphasubunit mRNA levels are not increased in autopsied cerebral cortex from patients with bipolar disorder. Brain Res 1996, 42:45–50.

    Article  CAS  Google Scholar 

  35. Avissar S, Barki-Harrington L, Nechamkin Y, et al.: Reduced b-adrenergic receptor-coupled Gs protein function and Gsa immunoreactivity in mononuclear leukocytes of patients with depression. Biol Psychiatry 1996, 39:755–760

    Article  PubMed  CAS  Google Scholar 

  36. Karege F, Bovier P, Stepanian R, et al.: Change in platelet GTPbinding protein in drug-free depressed patients. Human Psychopharmacol 1996, 11:115–121.

    Article  Google Scholar 

  37. Avissar S, Nechamkin Y, Roitman G, et al.: Reduced G protein functions and immunoreactive levels in mononuclear leukocytes of patients with depression. Am J Psychiat 1997, 154:211–217.

    PubMed  CAS  Google Scholar 

  38. Avissar S, Nechamkin Y, Roitman G, et al.: Dynamics of ECT normalization of low G protein function and immunoreactivity in mononuclear leukocytes of patients with major depression. Am J Psychiat 1998, 155:666–671. This paper describes the dynamics of normalization of altered G protein biochemical measures along electroconvulsive treatment. It provides evidence that biologic normalization precedes clinical improvement and thus might serve as a biochemical tool for monitoring and predicting clinical response.

    PubMed  CAS  Google Scholar 

  39. Young LT, Li PP, Kamble A, et al.: Mononuclear leukocyte levels of G proteins in depressed patients with bipolar disorder or major depressive disorder. Am J Psychiatry 1994, 151:594–596.

    PubMed  CAS  Google Scholar 

  40. Karege F, Bovier P, Stepanian R, et al.: The effect of clinical outcome on platelet G proteins of major depressed patients. Eur Neuropsychopharmacol 1998, 8:89–94.

    Article  PubMed  CAS  Google Scholar 

  41. Garcia-Sevilla JA, Walzer C, Busquets X, et al.: Density of guanine nucleotide binding proteins in platelets of patients with major depression: increased abundance of G alpha i2 subunit and down-regulation by antidepressant drug treatment. Biol Psychiatry 1997, 42:704–712.

    Article  PubMed  CAS  Google Scholar 

  42. Avissar S, Schreiber G, Nechamkin Y, et al.: The effects of seasons and light therapy on G proteins levels in mononuclear leukocytes of patients with seasonal affective disorder. Arch Gen Psychiat 1999, 56:178–183. This paper findings indicate that altered levels of G proteins also characterize atypical depression and may serve to distinguish between responders and nonresponders to light therapy.

    Article  PubMed  CAS  Google Scholar 

  43. Berrettini W: Progress and pitfalls: bipolar molecular linkage studies. J Affect Disord 1988, 50:287–297.

    Article  Google Scholar 

  44. Ram A, Guedj F, Cravchik A, et al.: No abnormality in the gene for the G protein stimulatory alpha subunit in patients with bipolar disorder. Arch Gen Psychiatry 1997, 54:44–48.

    PubMed  CAS  Google Scholar 

  45. Mitchell P, Vivero C, Waters B, et al.: Exclusion of close linkage of bipolar disorder to the Gs-alpha subunit gene in nine Australian pedigrees. J Affect Disord 1994, 32:187–195.

    Article  PubMed  Google Scholar 

  46. Ewald H, Eiberg H, Mors O: A search for genes predisposing to manic depressive illness on chromosome 20. Psychiatr Genet 1995, 5:105–111.

    Article  PubMed  CAS  Google Scholar 

  47. Berrettini WH, Ferraro TN, Goldin LR, et al.: Chromosome 18 DNA markers and manic-depressive illness: evidence for a susceptibility gene. Proc Natl Acad Sci USA 1994, 91:5918–5921.

    Article  PubMed  CAS  Google Scholar 

  48. Berrettini WH, Ferraro TN, Goldin LR, et al.: A linkage study of bipolar illness. Arch Gen Psychiatry 1997, 54:27–35.

    PubMed  CAS  Google Scholar 

  49. Berrettini WH, Vuorist J, Ferrar TN, et al.: Human G (olf) gene polymorphisms and vulnerability to bipolar disorder. Psychiatr Genet 1998, 8:235–238. This paper is part of a series of comprehensive genetic studies that provide evidence for the mapping of G-olf alpha within a region of chromosome 18, which has been implicated as a potential site of bipolar mood disorder susceptibility loci.

    Article  PubMed  CAS  Google Scholar 

  50. Stine OC, Xu J, Koskela R, et al.: Evidence for linkage of bipolar disorder to chromosome 18 with a parent-of-origin effect. Am J Hum Genet 1995, 57:1384–1394.

    PubMed  CAS  Google Scholar 

  51. Knowles JA, Rao PA, Cox-Matise T, et al.: No evidence for significant linkage between bipolar affective disorder and chromosome 18 pericentromeric markers in a large series of multiplex extended pedigrees. Am J Hum Genet 1998, 62:916–924.

    Article  PubMed  CAS  Google Scholar 

  52. Tsiouris SJ, Breschel TS, Xu J, et al.: Linkage disequilibrium analysis of G-olf alpha (GNAL) in bipolar affective disorder. Am J Med Genet 1996, 67:491–494.

    Article  PubMed  CAS  Google Scholar 

  53. Turecki G, Alda M, Grof P, et al.: No association between chromosome-18 markers and lithium-responsive affective patients. Psychiatry Res 1996, 63:17–23.

    Article  PubMed  CAS  Google Scholar 

  54. Rice J: Genetic Analysis of bipolar disorder: summary of GAW10. Genet Epidemiol 1997, 14:549–561.

    Article  PubMed  CAS  Google Scholar 

  55. Balciuniene J, Yuan QP, Engstrom C, et al.: Linkage analysis of candidate loci in families with recurrent major depression. Mol Psychiatry 1998, 3:162–168.

    Article  PubMed  CAS  Google Scholar 

  56. Wehr TA, Goodwin FK: Rapid cycling in manic-depressives induced by tricyclic antidepressants. Arch Gen Psychiatry 1979, 36:555–559.

    PubMed  CAS  Google Scholar 

  57. Wehr TA, Goodwin FK: Can antidepressants cause mania and worsen the course of affective illness? Am J Psychiatry 1987, 144:1403–1411.

    PubMed  CAS  Google Scholar 

  58. Mackey MC, Milton JG: Dynamical diseases. Ann NY Acad Sci 1987, 504:16–32.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avissar, S. The role of G proteins in the psychobiology and treatment of affective disorders and their integration with the neurotransmitter hypothesis. Curr Psychiatry Rep 1, 148–153 (1999). https://doi.org/10.1007/s11920-999-0024-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11920-999-0024-y

Keywords

Navigation